Contents

Contributors
Preface
Infrared Spectroscopy of Transient Surface Species
C. Lamberti, E. Groppo, G. Spoto, S. Bordiga and A. Zecchina
 I. Introduction
 MgO C Pressure-Dependent IR Spectroscopy of Hydrogen Adsorbed at 20 K on MgO Microcrystals of Various Surface Areas D. Temperature-Dependent IR Spectroscopy of Hydrogen Adsorbed on High-Surface-Area MgO. I Site-Specific Adsorption Energy for Molecularly Adsorbed Hydrogen Adducts. 2. Concluding Remarks and Assignment of Hydroxyl and Hydride Species
IV. Reactions Catalyzed by Brønsted Acid Sites: The MTO Process and Oligomerization of Unsaturated Hydrocarbons A. The MTO Process I. Mechanism of Methanol-to-Hydrocarbon Catalysis C. Carbocationic Methyl-Substituted Benzenes in Zeolites B. Oligomerization of Acetylenic and Olefinic Hydrocarbons in Zeolite Cavities. I. Acetylenic Molecules Formed in HZSM-5 at Room Temperature Olefinic Hydrocarbons Formed in Various Protonic Zeolites.
 V. Oligomerization Reactions Catalyzed by Surface Basic Centers: The MgO/CO Case Study. A. CO Oligomerization on MgO: Ab initio Calculation for Simple Cluster Models B. CO Oligomerization on MgO: Time- and Pressure-Dependent IR Spectroscopy at 60 K 1 Microcrystal Surface Area: A Means for Tuning Surface Reactivity 2. CO Oligomerization on High-Surface-Area MgO.

vi Contents

Contents

	3. Ammonia Adsorption	109
	5. Synthesis of Methyl Chloride	109 111
	B. Catalyst Poisoning In-Process Over Time	112
	C. Preferential Adsorption: Identification of Strongly Adsorbed Molecular Species on Pd/C Catalysts in a Process with Liquid-Phase Reactants (Heck Reaction). D. Catalyst Coking.	117
	E. Fuel Cell Catalysis: Site Occupation by Atomic Hydrogen-Titration of Surface Sites on Supported Nanoparticles of Various Sizes-Detection of Hydrogen Spillover	120
	F Hydrogenation/Hydrogasification	123
137	G. Zeolites	
	The Future of the IINS Technique	127
Keit	erences	129
	n Frequency Generation and Polarization-Modulation Infrared Reflectorption Spectroscopy of Functioning Model Catalysts from Ultrahigh	
Vac	euum to Ambient Pressure	
Giïn	ther Rupprechter	
	Introduction	134
11.	Model Catalysts for Investigations of Elementary Steps of Catalytic	1.40
111	Reactions	140
Ш.	High-Pressure Surface-Sensitive Techniques	144
	 Basics IR Gas-Phase Absorption Correction, Sensitivity toward Various Adsorbed Species, 	144
	and SFG Lineshape	146
	3. Design of an SFG Spectrometer	148
	SFG-compatible UHV-High-pressure Reaction Cells B. Polarization-Modulation IR Reflection Absorption Spectroscopy	149
	Basics High-pressure Reaction Cells for PM-IRAS and Experimental Design .	152 153
	C. High-Pressure X-Ray Photoelectron Spectroscopy I Introductory Remarks.	155 155
	2. High-pressure Reaction Cells for XPS	155
	D. High-Pressure Scanning Tunneling Microscopy	156
	E Environmental Transmission Electron Microscopy	157
IV.	Spectroscopy of Model Catalysts at Pressures Exceeding Ultrahigh	
	Vacuum	158
	Remarks	159
	B. Gas Purity-Precautions for Experiments at Pressures Exceeding UHV	160
	C CO Adsorption and CO-H ₂ Interactions on Pd(111) and Pd/Al ₂ O ₃	162
	1 CO Adsorption on Pd(111) and on "Defect-rich" Pd(111)	163
	2. CO Adsorption on Al ₂ O ₃ -supported Palladium Nanoparticles	171
	3. CO Dissociation on Palladium Surfaces	185
	4. Hydrogen Adsorption. Absorption, and Palladium Hydride Formation on Pd/Al ₂ O ₃	100
	and on Pd(111)	188

viii Contents

 5. CO H Interactions on Pd(111) and Pd/Al₂O₃ under UHV 6. CO Hydrogenation on Pd(111) and Pd/Al₂O₃ at Atmospheric Pressure 	190 198
D CO Adsorption. Dissociation, and Oxidation on Pt(111) and Platinum Nanoparticles	202
Supported on SiO ₂	202
1 CO Adsorption on Pt(111)	202
2. CO Adsorption on Platinum Nanoparticles Supported by SiO ₂	206 210
CO Dissociation and CO Oxidation on Pt(111) E. CO Adsorption. Dissociation, and Oxidation on Rh(111).	210
1 CO Adsorption and Dissociation on Rh(111)	210
2. CO Oxidation on Rh(111)	215
F. CO Adsorption on Gold, Nickel, Iridium, Iron, and Ruthenium Single Crystals	216
G. Broadband SFG Spectroscopy and Pump-probe Experiments	218
H. Monitoring Molecular Orientation by Polarization-Dependent SFG	218
I. Ethene Adsorption, C ₂ H ₄ -Hydrogen Coadsorption, and C ₂ H ₄ Hydrogenation on	
$Pd(111)$ and Pd/Al_2O_3	219
1 Ethene Adsorption and C ₂ H ₄ -Hydrogen Coadsorption on Pd(111) under UHV	219
2. Ethene Adsorption and C ₂ H ₄ Hydrogen Coadsorption on Pd/Al ₂ O ₃ under UHV	222
3. Ethene Hydrogenation on Pd(111) and Pd/Al ₂ O ₃ at Atmospheric Pressure	225
J. Ethene Adsorption and Hydrogenation on Pt(111); Effect of Coadsorbed CO .	228
1 C ₂ H ₄ Adsorption and Hydrogenation on Pt(111) under UHV and at mbar Pressure	228
2. C ₂ H ₄ CO Coadsorption and Hydrogenation on Pt(111) at Pressures Ranging from	220
UHV to 500 mbar.	230
K. Methanol Decomposition and Oxidation on Pd(111) and Pd/Al ₂ O ₃	232
1. Methanol Decomposition on Pd(111) under UHV and at Elevated Pressures .	232 237
2. Methanol Decomposition on Pd/Al ₂ O ₃ under UHV and at Elevated Pressures.	239
3. Methanol Oxidation on Pd(111) and on Pd/Al ₂ O ₃ at mbar Pressures .	
V. Outlook and Directions of Future Research	244
VI. Conclusions and Perspective	248
Acknowledgments	249
References	250
Electron Paramagnetic Resonance: A Powerful Tool for Monitoring Wor Catalysts	king
Angelika Brückner	
I. Introduction and Scope	266
II. Fundamentals and Methods of EPR Spectroscopy for Characterization	
of Working Catalysts	267
A. Basic Principles and Approaches for Evaluation of EPR Spectra	267
B. Experimental Equipment for Monitoring Working Catalysts by EPR Spectroscopy	272
1 Measurements at High Temperatures and Atmospheric Pressure	273
2. Measurements at Higher Temperatures and Pressures .	274
3. Matrix Isolation Electron Spin Resonance	275
III. Examples	277
A. Following the Formation of Active Catalysts from Precursor Structures .	277
1 Influence of Gas Atmosphere on Transformation of VOHPO ₄ ·0.5H ₂ O	277
2. Monitoring the Formation of MCM-type Catalysts by Spin Probes .	281

Contents ix

B. Assessing the Nature of Active TMI during Catalytic Redox Processes 1. Vanadium-Containing Oxide Catalysts in Selective Oxidation of n-Butane 2. FeZSM-5 Catalysts in SCR of N ₂ O and NO.	284 284 287
C Detection of Radical Intermediates in Heterogeneous Catalytic Processes . 1 Isolating π-Allyl Radicals during Propene Oxidation by MIESR Spectroscopy . 2. Detecting Hydroxyl Radicals in the Microwave-assisted Photocatalytic	292 293 295
Decomposition of Hydrocarbons D. Simultaneous Application of EPR Spectroscopy with UV Vis and Raman Spectroscopy IV. Benefits, Limitations, and Future Trends in the Application of EPR	293 298
Spectroscopy in Catalysis	303
Acknowledgments	305
References	305
Mössbauer Spectroscopy in Heterogeneous Catalysis	
Jean-Marc M. Millet	
I. Introduction	310
II. Mössbauer Spectroscopy	310
A. Physical Principles and Current Capabilities	310
B. Hyperfine Interactions and Mössbauer Parameters	313
C Spectral Analysis and Interpretations	317
	321
Lemission Mössbauer Spectroscopy (EMS).	321
2. Conversion Electron Mössbauer Spectroscopy (CEMS)	322
Emission Mössbauer Spectroscopy (EMS). Conversion Electron Mössbauer Spectroscopy (CEMS) Applications of Mössbauer Spectroscopy in Heterogeneous Catalysis.	323
A Identification of Catalyst Components	323
A. Identification of Catalyst Components	323
2. Tin-Containing Catalysts.	324
2. Tin-Containing Catalysts. 3. Gold-Containing Catalysts. 4. Antimony-Containing Catalysts	325
4. Antimony-Containing Catalysts	327
5. Catalysts Containing other Elements	327
B. Investigations of Catalysts in Reactive Atmospheres and under Working Conditions	328
1. Investigations of Functioning Catalysts	329
Investigations of Functioning Catalysts. Investigations of Quenched Catalysts	331
C Investigation of Chemisorption of Reactants and Molecular Probes	332
IV. Perspective	333
A. Current Developments and Applications	333
1 Mössbauer Spectroscopy of Catalysts under Working Conditions .	333
2. Mössbauer Spectroscopy of Catalysts below 4.2 K	333
3. Technological Advances and Theoretical Evaluation of Mössbauer Parameters	333
4. Mössbauer Spectroscopy and High-Throughput Catalyst Characterization	335
5. Mössbauer Spectroscopy for Characterization of Membranes and Monoliths	335
B. Future Developments and Applications	336
1 Nuclear Forward Scattering (NFS) of Synchrotron Radiation.	337
2. Nuclear Inelastic Scattering (NIS) of Synchrotron Radiation	341
V. Conclusions	343
References	344

x Contents

Characterization	of Catalysts	under	Working	Conditions	with a	an (Oscillating
Microbalance Re	actor						

D. Chen, E. Bjorgum, K. O. Christensen, A. Holmen and R. Lodeny	
I. Introduction	352
II. The Principle of Mass Measurement by TEOM	352
III. Description of a TEOM Experimental Set-Up	
	, 557
IV. Literature Survey of Application of Inertial Microbalance for	2.54
Investigations of Working Catalysts	
A. Investigations of Adsorption/Diffusion	357
B. Investigations of Carbon Formation and Catalyst Deactivation .	358
C Air Pollution Investigations	359
V. Methanol Conversion into Light Olefins Catalyzed by SAPO-3	34: A
TEOM Investigation	360
A. Coke Formation and Deactivation Characterized by Pulse Mass Analysis	. 360
B. Model of Coke Formation .	363
1 Nature of Coke	363
2. Reaction Pathway for Coke Formation	365
C Effect of Coke Deposition on Product Selectivity	365
D. Investigation of Adsorption under Catalytic Reaction Conditions	368
E. Diffusion and Reaction in SAPO-34	368
VI. Steam Reforming of Natural Gas	374
VII. Conclusions	
References	379
INDEX	