CONTENTS

Overview 1
Experience with the Use of the New ASTM E 813-87 2
A Comparison of the J-Integral and CTOD Parameters for Short Crack Specimen Testing 19
Normalization : An Experimental Method for Developing $J-R$ Curves 42
Quantification of Engineering Limits to J Control of Ductile Crack Growth 57
Specimen Size Requirements for Elastic-Plastic Crack Growth Resistance Curves 81
A Fracture Instability Data Qualification Limit 102
Development of Eta Factors in Elastic-Plastic Fracture Testing Using a Load Separation Technique 114
Obtaining J-Resistance Curves Using the Key-Curve and Elastic Unloading Compliance Methods : An Integrity Assessment Study 133
Nonincremental Evaluation of Modified $J-R$ Curve 150
Experience in Using Direct Current Electric Potential to Monitor Crack Growth in Ductile Metals 163
Analysis of Deformation Behavior During Plastic Fracture 178
Fracture Toughness and Fatigue Crack Initiation Tests of Welded Precipitation- Hardening Stainless Steel 197
Experience with J Testing of Type 304/308 Stainless Steel Weldment 213
Key-Curve Analysis Linde 80 Welds 225
Observations in Conducting $J-R$ Curve Tests on Nuclear Piping Materials 238
Effect of Residual Stress on the $J-R$ Curve of HY-100 Steel 260
Dynamic Fracture Toughness of Modified SA508C12 in the Ductile-to-Brittle Transition Region 273
Discussion 289
The Application of the Multispecimen J-Integral Technique to Toughened Polymers 290
Fracture Toughness of Polycarbonate as Characterized by the J-Integral 306
Determination of J_{lc} for Polymer Using the Single Specimen Method 320
Author Index 341
Subject Index 343