TABLE OF CONTENTS

I. Introduction .. 3

II. General Chemistry ... 5
A. Nomenclature .. 6
B. Chemical and Physical Properties 16
C. Synthesis of Parent Compounds 22
1. Aryl N-Methylcarbamates 22
2. N,N-Dimethylcarbamates 24
3. N-Phenylcarbamates .. 24
4. Oxime N-Methylcarbamates 24
5. Thiocarbamates .. 24
6. Dithiocarbamates and Ethylenebisdithiocarbamates 25

III. Mode of Action .. 26
A. Insecticides ... 26
B. Herbicides ... 27
C. Fungicides ... 28

IV. Environmental Persistence 29
A. Aquatic Environment ... 29
1. Water Quality Objectives 32
B. Soil and Sediment ... 33
C. Fish .. 36
D. Plants .. 36
E. Model Ecosystems ... 38
F. Environmental Study .. 38
G. Summary ... 40

V. Degradation and Metabolic Processes 40
A. Hydrolysis ... 41
B. Oxidation ... 42
C. Conjugation ... 43
D. Typical Metabolic Pathways 44
E. Synthesis of Carbamate Pesticide Metabolites 45

VI. Residue Analysis .. 49
A. Sampling and Sample Preservation 51

VII. Extraction ... 66
A. N-Methylcarbamates ... 66
1. Water .. 66
a. Typical Extraction Methods for Aqueous Samples 69
i. Separatory Funnel Method 69
ii. XAD-2 Resin Column 69
Analysis of Pesticides in Water

2. Soils and Sediment ... 69
3. Animal, Bird, and Fish Tissues 71
4. Plant Tissue .. 71
 B. Aminophenyl N-Methylcarbamates 73
 C. Oxime Carbamates .. 75
 D. N-Phenylcarbamates 75
 E. Thiocarbamate Herbicides 75
 F. Dithiocarbamates and EBDC Fungicides 76
 G. Concentration of Sample Extracts 76

VIII. Cleanup of Sample Extracts 76
 A. Separation of the Parent Carbamates from Their Phenols 79
 1. Typical Isolation of Carbamates Phenols 80

IX. Gas Chromatography (GC) 80
 A. Gas Chromatographic Detectors 81
 B. Direct GLC Determination of N-Methylcarbamates 82
 C. Direct GLC of Carbamate Phenols 89
 D. Direct GLC of Other Carbamates 90

X. Derivatization of N-Methylcarbamates 94
 A. Derivatives of Intact N-Methylcarbamates 95
 1. Typical Acylation of Intact N-Methylcarbamates 103
 B. Derivatives of Hydrolysis Products of N-Methylcarbamates 103
 1. Derivatization of Carbamate Phenols 104
 a. Typical Methods for Derivatization of Carbamate
 Phenols ... 115
 i. Pentafluorobenzylolation 115
 ii. Dinitrophenylation 116
 iii. DNT, PFB, or DNP Ethers of Carbamate
 Phenols 116
 2. Derivatization of Amine Hydrolysis Products of
 N-Methylcarbamates 116
 C. Analytical Hydrolysis of N-Methylcarbamates 119
 1. Typical Hydrolysis of N-Methylcarbamates to Isolate
 the Phenols 121
 D. On-Column Reactions 121

XI. Derivatization of Other Carbamate Pesticides 123
 A. Derivatization of the Intact Compound 124
 B. Derivatization of Hydrolysis Products 124
 C. Ethylenebisdithiocarbamate (EBDC) Fungicides and
 Ethylenethiourea (ETU) 129

XII. Other Determinative Methods 130
 A. HPLC .. 130
 B. TLC .. 136
 C. Enzymatic Techniques 138
 D. Fluorescence .. 141
 E. Colorimetric Methods 143
 1. Colorimetric Method for Dithiocarbamate and
 Ethylenebisdithiocarbamate Fungicides 145
I. INTRODUCTION

The "carbamate" class of pesticides is quickly gaining importance in the field of pest control. Due to the persistence of the organochlorine pesticides and the toxicity of the organophosphorus pesticides and their metabolites, the carbamates offer a viable alternative. Generally the carbamate insecticides demonstrate a high insect toxicity, but have a low toxicity towards warm blooded nontarget species, are more biodegradable and less persistent than the O.C. pesticides, and have relatively less toxic decomposition products. The biological activity of synthetic carbamate pesticides is due to the type of substitution to the basic carbamate moiety that results in these compounds being effective insecticides, herbicides, fungicides, nematicides, miticides, and molluscsides. The insecticidal carbamates are derivatives of carbamic acid and are therefore structurally related. Most of the herbicidal and fungicidal carbamates differ structurally from the carbamate insecticides, being primarily thiocarbamates and dithiocarbamates, respectively.

Although a naturally occurring carbamate ester, the alkaloid physostigmine in calabar seeds, is biologically active, all the carbamate pesticides are synthetic compounds. As early as 1931, the E.I. du Pont de Nemours Company showed that some derivatives of dithiocarbamic acid could control insects, but their superior fungicidal activity resulted in their development as the most widely used class of fungicides; among these compounds are the dithiocarbamates like ferbam, and the ethylenebisdithiocarbamates like zineb and maneb. In the late 1940s and early 1950s, Geigy Chemical Company found that heterocyclic enolic esters of dimethylcarbamic acid possessed insecticidal properties, and this led to the development of the N,N-dimethylcarbamate insecticides such as isolan and dimetilan. Union Carbide Corporation substituted aryl groups for the enols and methylcarbamic acid for the dimethylcarbamic acid and synthesized carbaril in 1953. Investigators at the University of California, Riverside, examining structure-activity relationships, established the superior insecticidal activity of aryl N-methylcarbamates. It is this group of compounds (e.g., carbaril, carbofuran) that accounts for most of the production and study among the carbamate pesticides. Biological effects of esters of carbanilic acid (carbamates) were reported by Friesen in 1929, but the herbicidal activity of N-phenylcarbamates (IPC) was not reported until 1945. About 1956, certain dithiocarbamates such as CDEC were shown to be herbicidally active by Monsanto Chemical Company, and subsequently around 1959, Stauffer Chemical Company produced many of the thiocarbamate herbicides (EPTC, butylate). Finally, in 1967, oxime carbamates (aldicarb) were introduced by Union Carbide following their work to synthesize N-methylcarbamates with a spatial resemblance to acetylcholine.

Growth of pesticide production and sales soared in the 1960s, but greater environmental awareness and stricter Federal laws limited this growth in the 1970s. Registrations were restricted or banned for many O.C. pesticides (DDT, aldrin) and use patterns shifted to more specific, less persistent insecticides such as the carbamates. Herbicides