The Lactate Issue Revisited: Novel Feeding Protocols To Examine Inhibition of Cell Proliferation and Glucose Metabolism in Hematopoietic Cell Cultures

Sanjay D. Patel,†,§ Eleftherios T. Papoutsakis,† Jane N. Winter,‡ and William M. Miller*†

Department of Chemical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3120, and Division of Hematology/Oncology, Department of Medicine and Robert H. Lurie Cancer Center, Northwestern University, Suite 850, 676 N. St. Clair, Chicago, Illinois 60611

It is well established that cell proliferation in batch (unfed) hematopoietic cell cultures is greatly inhibited relative to that in cultures with feeding. What is not known, however, is the nature of this inhibition. On the basis of our observations in hematopoietic cultures that cell proliferation ceases when the lactate concentration ([lactate]) exceeds 20 mM (accompanied by a decrease in culture pH), we investigated the effect of lactate accumulation on cell proliferation, metabolism, and differentiation. We differ in our approach from previous efforts in that we have tried to more accurately recreate the manner in which lactate accumulates in culture by employing a daily feeding protocol in which [lactate] and/or pH in the fresh medium was adjusted to match the conditions prior to feeding. We conclude that the decrease in pH associated with lactate accumulation significantly inhibits both cell proliferation and metabolism. Although inhibition in cultures with high [lactate] and low pH is similar to that in unfed cultures, pH control in unfed cultures does not alleviate the inhibition, indicating that other inhibitory factors are also present. Thus, pH control is necessary, but not sufficient, to eliminate inhibition of cell growth and metabolism in unfed hematopoietic cell cultures. We also conclude that high [lactate] and low pH have little effect on cell differentiation in fed cultures, although there is evidence to suggest that low pH may play a role in monocyte differentiation in unfed cultures.

Introduction

It has been hypothesized (and shown in recent clinical trials) that transplantation of large numbers of granulocytic post-progenitor cells (>10⁷ cells/kg patient) will be necessary to eliminate the 6–14 day period of neutropenia that follows high-dose chemotherapy and blood stem cell transplantation (17, 22, 24). Most technologies recently employed for cell production in clinical trials have relied on batch cultures, using many tissue-culture flasks or gas-permeable bags inoculated at relatively low cell densities (~10⁴ CD34+ cells/mL) (1, 2, 6, 22, 27). While low-density cultures minimize the need for medium exchange, the handling and subsequent processing of many culture devices (typically 10 or more) is undesirable from a clinical standpoint. To reduce the culture volume by increasing the cell density represents a process development challenge that will require a more detailed understanding of both the nutritional requirements of hematopoietic cells and their sensitivity to the toxic effects of metabolite accumulation.

Observations in our laboratory show that cell proliferation ceases—in cultures of varying cell densities and feeding frequencies—when the lactate concentration approaches 20 mM (21). It was unclear, however, if the observed growth inhibition was due to the presence of the lactate ion itself or the accompanying decrease in medium pH. Previous studies in a variety of other cell lines have shown medium acidification to be the primary cause of growth inhibition (4, 7–9, 15, 18, 20, 23, 26). These studies were performed by initially adding different concentrations of a lactate salt (with or without pH adjustment of the culture) and observing the corresponding growth kinetics. However, there is reason to believe that this approach does not represent a realistic portrayal of what actually happens in culture. Large step increases in lactate concentration (and decreases in pH) are not observed in practice. Instead, lactate gradually accumulates, allowing for the possibility of adaptation, a feature that has been noted with ammonia in hybridoma cultures (11, 15, 16). Furthermore, it has been suggested that exogenous addition of an inhibitor is different from the inhibitor being endogenously produced and released into the medium (10). For these two reasons, experiments performed by initially adding exogenous lactate may yield results different from those in which lactate is endogenously produced in a more gradual fashion.

We have designed a set of experiments in an effort to more accurately assess inhibition due to lactate accumulation in hematopoietic cell cultures of peripheral blood mononuclear cells (PB MNCs). We employed a daily feeding protocol in which the concentration of lactate ion...
measured using a model 1306 blood gas analyzer (In-

using an Advanced Instruments model 3D3 osmometer
Medium osmolality was measured
concentrations were measured daily using a YSI model 2700
also prepared for colony-forming cell assays and flow
(Coulter, Hialeah, FL) after treatment with cetrimide
at day 5, the flasks were sampled daily and analyzed for
Fed lactate was added to the fresh medium to obtain
Fed lactate (Sigma) was added to the fresh medium to obtain
The cell suspension was then inoculated
prepared for colony-forming cell assays and flow

Cell Samples and Liquid Cultures. Samples of PB
Samples were collected after written consent under protocols approved by the various Institutional Review Boards. Approximately 48 h after collection, samples were suspended at

Fed + Lactate + HCl: flasks were fed daily by 1/2 medium exchange; 1
Fed + Lactate: flasks were fed daily by 1/2 medium exchange. Sodium lactate was added to the fresh medium to obtain a concentration equivalent to that in the cell culture prior to feeding (prefeeding concentration). (2) Fed + Lactate: flasks were fed daily by 1/2 medium exchange. Sodium lactate was added to the fresh medium at a concentration equivalent to the prefeeding concentration. (3) Fed + NaCl: flasks were fed daily by 1/2 medium exchange; 1 M NaCl was added to the fresh medium to obtain a concentration equivalent to the concentration of sodium lactate added in the (Fed + Lactate) flasks. (4) Fed: flasks were fed daily by 1/2 medium exchange. For all flasks that were fed, medium exchange was performed by removing 1/2 of the spent medium and spinning down the cells at 300g for 10 min using an IEC CL3R centrifuge (IEC, Needham Heights, MA). The supernatant was carefully removed, so as not to disturb the cell pellet.

Colonies were classified as CFU-GM or BFU-E through

Flow Cytometry. Lineage distribution of the cell
Samples were run on a FACScan (BD) flow cytometer

Fresh medium (adjusted as described above and pre-
equilibrated in a 5% CO2 atmosphere) was then added to
resuspend the cell pellet, and the cell suspension was added back to the original flask. Two unfed cultures were also established as follows: (1) Not Fed: flasks were unfed for the culture duration. (2) Not Fed + NaOH: flasks were unfed for the culture duration. However, 1 M NaOH was added daily to adjust the pH to match that of the Fed cultures after feeding. In (Not Fed) and (Not Fed + NaOH) cultures, 10 ng/mL G-CSF was added every other day to prevent depletion of G-CSF due to instability (25).

Colonies were classified as CFU-GM or BFU-E

Calculations. Specific glucose consumption rates at
day n were calculated using the following time-weighted average:

\[q_{g_{Lu,n}} = \frac{\Delta t_a \left(-\Delta G_a \left(\frac{1}{CD_{LM,a}} \right) \right) + \Delta t_b \left(-\Delta G_b \left(\frac{1}{CD_{LM,b}} \right) \right)}{(\Delta t_a + \Delta t_b)} \]

where \(\Delta t_a \) and \(\Delta t_b \) are the intervals in hours immediately after
day \(n \) \((t_{n+1} - t_n) \) and before day \(n \) \((t_n - t_{n-1}) \), respectively. \(\Delta G \) is the change in glucose concentration for the indicated period, and \(CD_{LM} \) is the log mean cell density for the indicated period.

Specific lactate production rates at day n were calculated using a similar average:

\[q_{lac_{Lu,n}} = \frac{\Delta t_a \left(\Delta L_a \left(\frac{1}{CD_{LM,a}} \right) \right) + \Delta t_b \left(\Delta L_b \left(\frac{1}{CD_{LM,b}} \right) \right)}{(\Delta t_a + \Delta t_b)} \]
Cumulated to 34.3 mM by day 14. In the cultures maintained at a relatively constant pH, but lactate accumulated to 26.5 mM (Figure 1b) by day 14. In contrast, the Fed cultures inhibited expansion only slightly (15.4-fold; approximately 66% relative to the Fed cultures (20.5-fold). The presence of lactate ion in the (Fed + Lactate) cultures inhibited expansion only slightly (15.4-fold; approximately 25% inhibition), even though [lactate] was 30% higher than in the (Fed + Lactate + HCl) cultures. Our main goal was to understand whether growth inhibition in unfed batch cultures could be explained by the accumulation of lactate ion, the accompanying decrease in medium pH, or by other factors, such as nutrient depletion. Toward this end, four cultures were set up to isolate the variables in question. The pH and lactate profiles for these cultures are shown in Figure 1. In the (Not Fed) cultures, which have the additional possibility of nutrient depletion, the pH decreased to 6.66 (Figure 1a) and [lactate] increased to 26.5 mM (Figure 1b) by day 14. In contrast, the Fed cultures were maintained at a relatively constant pH (7.1–7.3) and low [lactate] (<15 mM) for the culture duration. The (Fed + Lactate) cultures were also maintained at a relatively constant pH, but lactate accumulated to 34.3 mM by day 14. In the (Fed + Lactate + HCl) cultures, neither pH, which dropped to 6.68, nor [lactate], which increased to 23.2 mM, were maintained within a constant range. In all cultures, the changes in pH and/or [lactate] occurred gradually, as is typically observed in batch (Not Fed) cultures.

Results

pH and Lactate Concentration. Our main goal was to understand whether growth inhibition in unfed batch cultures could be explained by the accumulation of lactate ion, the accompanying decrease in medium pH, or by other factors, such as nutrient depletion. Toward this end, four cultures were set up to isolate the variables in question. The pH and lactate profiles for these cultures are shown in Figure 1. In the (Not Fed) cultures, which have the additional possibility of nutrient depletion, the pH decreased to 6.66 (Figure 1a) and [lactate] increased to 26.5 mM (Figure 1b) by day 14. In contrast, the Fed cultures were maintained at a relatively constant pH (7.1–7.3) and low [lactate] (<15 mM) for the culture duration. The (Fed + Lactate) cultures were also maintained at a relatively constant pH, but lactate accumulated to 34.3 mM by day 14. In the (Fed + Lactate + HCl) cultures, neither pH, which dropped to 6.68, nor [lactate], which increased to 23.2 mM, were maintained within a constant range. In all cultures, the changes in pH and/or [lactate] occurred gradually, as is typically observed in batch (Not Fed) cultures.

Cell Proliferation. Total cell expansion from days 7–14 for each of the four cultures is shown in Figure 2. As expected, the (Not Fed) cultures exhibited the smallest expansion at day 14 (6.9-fold), representing an inhibition of approximately 66% relative to the Fed cultures (20.5-fold). The presence of lactate ion in the (Fed + Lactate) cultures inhibited expansion only slightly (15.4-fold; approximately 25% inhibition), even though the final [lactate] was 30% higher than in the (Not Fed) cultures (Figure 1b). In contrast, the presence of both low pH and the lactate ion in the (Fed + Lactate + HCl) cultures significantly inhibited cell expansion (8.9-fold expansion; approximately 60% inhibition), even though [lactate] was slightly lower than in the (Not Fed) cultures. Because the feeding process in the (Fed + Lactate) cultures involved adding sodium lactate to the fresh medium, an increase in medium osmolality was to be expected. Indeed, when day 14 supernatants were analyzed, the (Fed + Lactate) cultures had a significantly higher medium osmolality than the Fed cultures (343 vs 306 mOsm/kg, respectively; p < 0.05). Parallel (Fed + NaCl) cultures were therefore employed to determine if the inhibition observed in the (Fed + Lactate) cultures (and part of the inhibition in the (Fed + Lactate + HCl) cultures; 340 mOsm/kg) could be explained by the increase in medium osmolality. The culture conditions at day 14 for this experiment are shown in Table 1. Total cell expansion for the (Fed + Lactate) cultures and the (Fed + NaCl) cultures were similar for the duration of the experiment (Figure 3). By day 14, total cell expansion was inhibited by approximately 20% in both the (Fed + Lactate) cultures (11.7-fold expansion) and the (Fed + NaCl) cultures (11.8-fold expansion), relative to the Fed cultures (14.8-fold expansion).

Daily pH control was also implemented in (Not Fed) cultures to determine the extent to which the pH decrease due to lactate accumulation contributes to growth inhibi-
tion in the (Not Fed) cultures. As shown in Figure 4, there is no improvement in total cell expansion for the culture duration despite pH control (Table 1). By day 14, both (Not Fed) and (Not Fed + NaOH) cultures exhibited only 6- to 8-fold expansion of total cells, compared to 14.8-fold expansion in Fed cultures.

Cell Metabolism. We examined profiles of the specific glucose uptake rates (q_{glu}) and specific lactate production rates (q_{lac}) to determine if lactate accumulation affects glucose metabolism. As shown in Figure 5, both q_{glu} and q_{lac} decreased only slightly with time in the Fed cultures. In contrast, in the (Not Fed) cultures, q_{glu} declined from 0.75 to 0.10 \times 10^{-7} \text{mol/cell h}, and q_{lac} declined from 1.43 to 0.10 \times 10^{-7} \text{mol/cell h}. This represents a 87% and 93% decrease in q_{glu} and q_{lac}, respectively, when compared to Fed cultures at day 13. Similar to cell proliferation, the lactate ion in the (Fed + Lactate) cultures had little effect on either q_{glu} or q_{lac} (11% and 12% decrease, respectively, when compared to Fed cultures at day 13), while the presence of both low pH and high [lactate] in the (Fed + Lactate + HCl) cultures resulted in large decreases (82% and 66%, respectively).

We next examined to what extent the decreases in q_{glu} and q_{lac} in the (Not Fed) cultures could be explained by medium acidification from lactate accumulation. As shown in Figure 6, both q_{glu} and q_{lac} were greater in the (Not Fed + NaOH) cultures than in the (Not Fed) cultures between days 9 and 12 (although they were still lower than in the Fed cultures). By day 13, however, these differences with the (Not Fed) cultures were greatly reduced, possibly as a result of the fact that [glucose] in the (Not Fed + NaOH) cultures approached 0 mM at day 13 in two of the five experiments (7.6 ± 0.4 vs 1.4 ± 0.6 mM in (Not Fed) and (Not Fed + NaOH) cultures, respectively; n = 5).

Cell Differentiation. Unlike the case for cell expansion and metabolism, lactate accumulation and pH decreases had little effect on cell differentiation. Figure 7a,b shows the percentages of CFU-GM and BFU-E, respectively, for the various cultures. Although there are scattered instances of statistically significant differences between some of the cultures, the differences are not very large. Furthermore, accurately determining these differences is very difficult given the small fraction of progenitor cells (<1%) at late culture times.

We also quantified the percentages of post-progenitors, which comprise the bulk of the total cell product. Since the cytokine combination used in these studies favors the production of granulocytes and monocytes, we chose appropriate cellular markers to identify both mature monocytes (CD14+ cells), immature granulocytes (CD15+CD11b+ cells), and mature granulocytes and mature monocytes (CD15+CD11b+ cells). While there were few differences in the fraction of CD14+ monocytes between the four cultures (Figure 8a), there was a marked difference in the distribution of granulocytes between the (Not Fed) and Fed cultures (Figure 8b,c). In the Fed cultures, the fraction of immature granulocytes (CD15+CD11b+ cells) steadily decreased from days 7 to 14 (from approximately 25% to 5%), concomitant with a rise in the fraction of mature granulocytes/mature monocytes (CD15+CD11b+ cells; from approximately 40% to 60%). In contrast, the (Not Fed) cultures maintained the percentage of CD15+CD11b+ cells at nearly constant levels past day 10. By days 12–14, the (Not Fed) cultures had nearly 3 times as great a percentage of CD15+CD11b+ cells as the Fed cultures. When pH was controlled in the (Not Fed + NaOH) cultures, this trend was maintained (data not shown). Furthermore, the fraction of CD14+ monocytes at day 14 increased from 30% in the (Not Fed) cultures to 50% in the (Not Fed + NaOH) cultures (p < 0.05; data not shown). The percentages of various cell types in both (Fed + Lactate) and (Fed + Lactate + HCl) cultures were similar to those in the Fed cultures at all times, although the CD15+CD11b+ cell content was

Table 1. Culture Conditions at Day 14 for the Indicated Cultures (mean ± SEM of five experiments)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.10 ± 0.12</td>
<td>7.14 ± 0.07</td>
<td>7.05 ± 0.16</td>
<td>6.67 ± 0.14</td>
<td>7.14 ± 0.03</td>
</tr>
<tr>
<td>[lactate] (mM)</td>
<td>14.7 ± 5.0</td>
<td>34.2 ± 10.7</td>
<td>14.7 ± 3.8</td>
<td>25.0 ± 3.0</td>
<td>34.2 ± 5.1</td>
</tr>
<tr>
<td>osmolality (mOsm/kg)</td>
<td>303 ± 4</td>
<td>347 ± 6</td>
<td>348 ± 6</td>
<td>318 ± 11</td>
<td>329 ± 2</td>
</tr>
</tbody>
</table>

Figure 3. Total cell expansion from days 7–14 for the indicated cultures. The mean ± SEM of five experiments is shown. Statistically significant differences (p < 0.05) were observed when Fed cultures were compared to (Fed + Lactate) cultures on days 9–10, 12 and (Fed + NaCl) cultures on days 13–14. There were no statistically significant differences between (Fed + Lactate) and (Fed + NaCl) cultures.

Figure 4. Total cell expansion from days 7–14 for the indicated cultures. The mean ± SEM of five experiments is shown. Statistically significant differences (p < 0.05) were observed when Fed cultures were compared to (Not Fed) cultures on days 10, 12–14 and (Not Fed + NaOH) cultures on days 12–14. There were no statistically significant differences between (Not Fed) and (Not Fed + NaOH) cultures.
somewhat lower at day 14 in the (Fed + Lactate + HCl) cultures.

Discussion

Previous efforts to study lactate inhibition of cell proliferation and metabolism relied on a strategy whereby different concentrations of a lactate salt were initially added to batch cultures (with or without pH adjustment); conclusions were then drawn from the corresponding growth and metabolism kinetics. Although easy to implement, this approach is limited in two ways. First, it does not allow for the possibility of cell adaptation to adverse culture conditions. For example, it has been well documented that hybridomas are capable of adapting to step changes in ammonia concentration, given enough time. Miller et al. (15) and Matsumura et al. (11) examined step changes of varying levels in continuous culture ([ammonium] ranging from 2.5 to 12.6 mM) and noted that, after a transient decline (lasting 3–10 days), the viable cell concentration recovered to its initial value. Newland et al. (16) further noted in fed-batch cultures that if an increase in [ammonium] is performed gradually over several days, the cells adjust even better, with no observed effect on their ability to proliferate. In this regard, it is possible that the concentrations of lactate and/or pH that were found to be inhibitory in previous studies (where lactate was initially added to batch cultures) might be inaccurate.

A second potential limitation in the previous studies is the fact that lactate was added exogenously to the cultures. It has been postulated that exogenously added ammonia does not inhibit cultures in the same manner.

Figure 5. Specific glucose consumption rate (a) and specific lactate production rate (b) from days 7–14 for the indicated cultures. The mean ± SEM of nine experiments is shown. For specific glucose consumption rates, statistically significant differences (p < 0.05) were observed when (Not Fed) cultures were compared to Fed cultures on days 8–13 and (Fed + Lactate) cultures on days 8–13. Statistically significant differences were observed when (Fed + Lactate + HCl) cultures were compared to Fed cultures on days 8–13 and (Fed + Lactate) cultures on days 8–13. Statistically significant differences were observed when (Fed + Lactate) cultures were compared to Fed cultures on days 12 and 13. For specific lactate production rates, statistically significant differences were observed when (Not Fed) cultures were compared to Fed cultures on days 8–13, (Fed + Lactate) cultures on days 8–13, and (Fed + Lactate + HCl) cultures on days 10–13. Statistically significant differences were observed when (Fed + Lactate + HCl) cultures were compared to Fed cultures on days 8–13 and (Fed + Lactate) cultures on days 8–13. Statistically significant differences (p < 0.05) were observed when (Fed + Lactate) cultures were compared to Fed cultures on days 12 and 13.

Figure 6. Specific glucose consumption rate (a) and specific lactate production rate (b) from days 7–14 for the indicated cultures. The mean ± SEM of five experiments is shown. For specific glucose consumption rates, statistically significant differences (p < 0.05) were observed when (Not Fed) cultures were compared to Fed cultures on days 10–13 and (Not Fed + NaOH) cultures on days 10–13. Statistically significant differences were observed when (Not Fed + NaOH) cultures were compared to Fed cultures on days 11–13. For specific lactate production rates, statistically significant differences were observed when (Not Fed) cultures were compared to Fed cultures on days 9–13 and (Not Fed + NaOH) cultures on days 8 and 10–12. Statistically significant differences were observed when (Not Fed + NaOH) cultures were compared to Fed cultures on days 12–13.
as if ammonia were produced by the cell and released into the medium (10). It is not known if the same phenomenon applies to lactate. Therefore, instead of adding lactate to our cultures, we merely replaced the lactate that had already been produced by the cells.

Within this experimental framework, we have shown that the decrease in pH accompanying lactate accumulation significantly inhibits cell proliferation. This inhibition (60%) became apparent by day 10 (Figure 2) when pH decreased to approximately 6.9 and [lactate] increased to 20 mM in the (Fed + Lactate + HCl) cultures (Figure 1). In contrast, only slight inhibition (20–25%) was observed in the (Fed + Lactate) cultures, where pH was maintained relatively constant (7.1–7.3) and lactate was allowed to accumulate (>30 mM). As shown by the (Fed + NaCl) cultures (Figure 3), this residual growth inhibition that we observed from the lactate ion can be accounted for by the corresponding increase in medium osmolality. It is important to note, however, that this increase in osmolality is an artifact.
of the feeding process used. In typical unfed hematopoietic cultures, the effect of lactate production on medium osmolality is counterbalanced by the consumption of nutrients, resulting in a fairly constant medium osmolality over time (314 vs 306 mOsm/kg in (Not Fed) and Fed cultures, respectively, at day 14). Thus, our results show that as long as pH is reasonably well controlled, cellular production of lactate should not prove detrimental to culture performance. Obviously, the concentration of lactate at which pH becomes inhibitory is dependent on the buffering capacity of the medium. Therefore, careful consideration should be given to choosing a medium that can handle the expected concentrations of lactate. Alternatively, appropriate pH control strategies (base addition, gas headspace manipulation, etc.) can be implemented to ensure that constant pH is maintained for the culture duration.

Our results are consistent with those of previous studies that have shown that the proliferation of various cell lines (e.g., hybridoma, BHK, Vero, and CHO) is unaffected by [lactate] as high as 40 mM, provided pH is maintained at an optimal value (4.7–9, 15, 18, 20, 23, 26). Since these earlier studies relied on the addition of exogenous lactate, our results suggest that endogenously produced lactate inhibits proliferation similarly, at least qualitatively. Only a direct comparison using the two experimental approaches can confirm if the inhibition is quantitatively similar as well.

We have also shown that the associated decrease in pH accompanying lactate accumulation greatly inhibits glucose metabolism. Similar to cell proliferation, we observed significant reductions of qglu and qlac in (Fed + Lactate + HCl) cultures and only slight reductions in (Fed + Lactate) cultures (Figure 5). Medium acidification has been shown to decrease qglu and qlac in a variety of cell lines in both batch and continuous cultures (7, 14, 19). A likely explanation for the reduced glycolytic flux involves the alteration of intracellular pH (pHi). McQueen and Bailey (13) and Ozturk et al. (20) have shown that decreasing extracellular pH can result in cytoplasmic acidification in hybridomas. Decreases in pHi are known to decrease the activity of key glucose metabolizing enzymes (i.e., hexokinase, phosphofructokinase), resulting in decreased consumption of glucose and production of lactate (5). In our studies, we see significant deviations between the Fed and (Fed + Lactate + HCl) cultures for both qglu and qlac by day 9, by which time extracellular pH was approximately 7.15 and 6.95, respectively (Figure 1a). pH will have to be measured in these cultures to confirm this hypothesis.

Finally, we observed very few differences in cell composition between the Fed, (Fed + Lactate) and (Fed + Lactate + HCl) cultures, showing that lactate accumulation and pH decreases have little effect on the fractions of progenitor (Figure 7) and post-progenitor (Figure 8) cells in daily fed cultures. McAdams et al. also examined the effects of pH on the fraction of BFU-E and CFU-GM in PB MNC and cord blood MNC cultures. They observed no effect on the percentage of BFU-E and CFU-GM as pH decreased from 7.35 to 7.15 and only a slight increase in the percentage of BFU-E (12). Interestingly, we observed a higher fraction of immature granulocytes (CD15+ CD11b− cells) in both (Not Fed) and (Not Fed + NaOH) cultures. This would suggest that factors other than medium acidification and lactate accumulation are responsible for this phenomenon. Since the production of immature granulocytes is likely to be important for mediating short-term neutrophil engraftment, isolating these factors will undoubtedly be important.

Although medium acidification can account for much of the difference observed between the (Not Fed) and Fed cultures, it is not the only factor involved. We have shown that pH control in the (Not Fed) cultures does not alleviate the inhibition of growth (Figure 4) and only partially alleviates the inhibition of glucose metabolism (Figure 6). Also, as mentioned above, lactate and pH decreases cannot explain the blocking of granulocyte differentiation in the (Not Fed) cultures. Clearly, there are other inhibitors that must be identified. One possible candidate is ammonia, whose concentration in the (Not Fed) and (Not Fed + NaOH) cultures at day 14 was approximately 3 mM (vs 1.5 mM in Fed cultures). Several studies have shown that comparable concentrations of ammonia (1–5 mM) can inhibit growth by 50% in a variety of cell lines (4, 15, 20, 26). Interestingly, in contrast to our results, the inhibitory concentrations of ammonia were found to increase both qglu and qlac in some of these studies (15, 20). It is also possible that key nutrients (i.e., amino acids) have been depleted in the (Not Fed) cultures, inhibiting both growth and metabolism. In this regard, because nutrients are depleted more rapidly in (Not Fed + NaOH) cultures, the similar cell growth in (Not Fed) and (Not Fed + NaOH) cultures does not indicate that medium acidification is not the primary limitation in (Not Fed) cultures. It simply indicates that pH control alone is not sufficient to significantly improve performance in unfed cultures. Only a systematic approach of analyzing nutrient concentrations and studying potential inhibitors will shed further light on this issue.

Acknowledgment

We would like to thank Amgen for donation of Stem Cell Factor and Novartis for donation of IL-3 and IL-6. We are grateful to Response Oncology (especially Chet Cudak, Cathy Allen, and Dr. Bonnie Hazeltone) for providing apheresis products. This work was supported by National Science Foundation grants BES-9809730 and BES-9410751 and the State of Illinois Excellence in Academic Medicine Act.

References and Notes

Accepted for publication July 17, 2000
BP000080A