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A mathematical model (array of spheres or AOS Model)
of aqueous depth filtration was developed using trajectory
analysis performed on a porous media model comprised
of a face-centered cubic packing of spheres. To extend
removal efficiency predictions beyond the grain-size scale
and take into account the presence of densely and
sparsely packed regions in an actual filter bed, a parallel
deficit porosity compensation scheme was developed
and applied. A correlation for single collector efficiency
was developed from trajectory results and, using the parallel
deficit porosity compensation scheme, compared to an
existing model and experimental results. Although the model
discussed herein was developed with the intent of
advancing the understanding of depth filtration, this work
offers tools for investigating and insights into particle
fate and transport in other circumstances, e.g., groundwater
aquifers. This model represents the first use of a porous
media model that explicitly accounts for grain contact
points for trajectory modeling of aqueous depth filtration.
Particle collection within the model was strongly associated
with grain contact points, a phenomenon due largely to
hydrodynamic forces “funneling” particles to trajectories
coincident with grain contact points. In comparison to
previous trajectory models, this model is less sensitive to
particle size and filtration rate and much less sensitive
to surface chemistry than other currently available models.
At moderate to high filtration rates (on the order of 3.7
mm/s or 5.4 gpm/ft2), the AOS model represented well
experimental data for removal of particles less than 5 µm.
At lower filtration rates and larger particle sizes, the
AOS model tends to overpredict particle removal.

Introduction
Depth filtration is the solid/liquid separation process in which
a suspension, generally dilute, is passed through a packed
bed of sand, anthracite, or other granular media. Solids
(particles) attach to the media or previously retained particles
and are removed from the fluid. Because of public health
concerns and regulatory pressure, filtration is virtually
ubiquitous in the treatment of surface waters for potable

water supply. Depth filtration is also often successfully used
as a tertiary treatment for wastewater. The process has been
used for centuries and has been studied quite extensively;
however, on a fundamental level, depth filtration is very
complex, and understanding is still limited. Since filtration
is often the final particle removal process, unit process failure
results in overall plant failure; conversely, if the filtration
process is operating properly, effects of unit process failure
upstream can be mitigated by filtration.

Performance of a filter is quantified by particle removal
and head loss across the packed bed. In water and wastewater
treatment, particle removal or effluent quality must meet or
exceed a specified standard throughout the dynamic cycle
of ripening (often observed initial increase in removal
efficiency) and breakthrough (deteriorating effluent quality).
The duration of a filter run is limited by numerous con-
straints: available head, effluent quality, or flow requirement.
The head loss and removal efficiency of a filter are compli-
cated functions of suspension qualities (particle size distri-
bution and concentration, particle surface chemistry, and
solution chemistry), filter design parameters (media size, type,
and depth), and operating conditions (filtration rate and filter
runtime). Adequate predictive models are not yet available
for use within a rational design framework, and hence,
conservative designs or extensive pilot studies are required
to develop design parameters. Responses to changes in
influent quality or operating parameters are currently
impossible to predict.

The grains and pores of a deep bed filter form a complex,
random structure, and the hydrodynamics of the system
cannot be described exactly in a mathematical framework
at this time. The complexity of the system leads to two
possible approaches to the problem: the physical system
can be approximated crudely enough that an exact math-
ematical solution to the problem is feasible, or a more
accurate representation of the system can be used that
requires an approximate mathematical solution. Previous
research has been performed using media models following
the former approach, while the research discussed herein
follows more closely the latter. Specifically, trajectory analysis
was performed using a media model that explicitly accounts
for grain contact points; the packed bed was modeled as a
face-centered cubic array of spheres. However, unlike
previously implemented media models that possess geom-
etries simple enough to be solved exactly under Stokes’ flow
assumptions, the solution applied to the flow field within
the array of spheres media model is an approximation.

Although representation of grain packing as a uniform
lattice of spheres is much simpler than the random packing
of nonuniform grains in an actual filter bed, it shares with
an actual filter the important feature of contact points among
grains. Effects of filter grain contact points on particle
collection have not been considered explicitly in previous
models of deep bed filtration. The specific objectives of this
research were to develop a mathematical model of initial
removal in a deep bed filter based on trajectory analysis
performed on a media model comprised of dense periodic
packing of spheres and couple the trajectory results with an
appropriate representation of the entire filter bed. Descrip-
tion and results of the resulting model of aqueous depth
filtration, referred to as the array of spheres (AOS) model, are
presented below.

Modeling Approach
Background. Depth filtration has been investigated exten-
sively through mathematical modeling. The first math-
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ematical description of depth filtration was formulated by
Iwasaki (1). Through extensive experimental observation
and deductive reasoning, Iwasaki developed relationships
describing the operation of deep bed filters. Originally
expressed as a set of partial differential equations and cast
in terms of particle flux, Iwasaki’s equations are generally
written in modern filtration literature in terms of number
concentration rather than flux. Under clean bed conditions,
the set of partial differential equations condense to a single
first-order ordinary differential equation:

where z is the media depth (L), λo is the initial filter coefficient
(L-1), and N is the particle number concentration (number
L-3).

Currently, the only predictive approach to modeling
removal of non-Brownian particles in depth filtration is
trajectory analysis. In trajectory analysis, a simplified model
of the filter bed and associated flow field is selected, and
through resolution of forces and torques on a particle in the
system, the trajectory of that particle can be determined.
The particle trajectory determines the fate of the particle,
i.e., retention on the filter media or passage through the
system. Trajectory analysis is an approach that has led to
considerable insight toward depth filtration and is a method
of predicting a priori the initial (clean bed) filter coefficient
(λo in eq 1).

Yao et al. (2) presented the first use of trajectory analysis
in modeling deep bed filtration of hydrosols, applying an
isolated sphere under Stokes’ flow to represent the hydro-
dynamics of the flow near a single filter grain. Subsequently,
researchers have performed trajectory analysis using porous
media models that account for neighboring grains, most
notably, sphere-in-cell (3-7) and constricted tube (8, 9). Note
that these models were originally developed as a means of
estimating head loss across packed beds, and later, filtration
researchers adopted these models for use in conjunction
with trajectory analysis calculations.

Rajagopalan and Tien (4, 5) correlated trajectory analysis
results with dimensionless groups for gravity (NG), particle-
collector ratio (NR), and London attraction (NLo) to obtain
the unit collector efficiency due to sedimentation and
interception. The correlation in terms of single collector
efficiency (ηs(S&I)) may be expressed as

where As is the Happel’s flow parameter:

and p ) (1 - ε)1/3, w ) 2 - 3p + 3p5 - 2p6, and ε is the
porosity.

where H is the Hamaker’s constant; dp is the particle diameter;
dc is filter media grain (collector) diamter; Fp and Fl are particle
and fluid viscosity, respectively; g is the gravitational constant;

µ is the fluid viscosity; and Vo is the superficial velocity. As
the correlation of trajectory analysis results presented in eq
2 includes only deterministic (or nondiffusional) collection
terms, collection due to diffusion was included by adding
the following term for single collector efficiency due to
diffusion (10):

where ηd is the diffusional collection (collection by Brownian
motion), Pe is the Peclet number [(dcVo)/DBM] with DBM as
the particle diffusion coefficient [kT/(3πµdp)], k as the
Boltzmann’s constant, and T as the absolute temperature.

A primary drawback of current media models when
applied to trajectory analysis is the failure to explicitly account
for grain contact points. Porous media models that have
been implemented for trajectory analysis of hydrosols are
similar in that specific grain interactions, i.e., flow field and
geometric features induced by grain contact points and
proximity, are not explicitly taken into account. In existing
models, the filter grains (isolated sphere and sphere-in-cell
models) or pores (capillaric and constricted tube models)
are represented by geometries that are solids (or voids) of
revolution. Thus, the velocity profiles are also surfaces of
revolution, and two-dimensional trajectory analysis is suf-
ficient to define all particle trajectories.

One method of taking into account collector-collector
interactions is to model the filter media as an array of regularly
packed spheres. Although a regular packing arrangement of
spheres does not represent exactly the random packing and
often nonuniform grains of an actual filter, it allows a more
realistic representation of the geometry and flow field than
current media models. Gal et al. (12) used a face-centered
cubic packing of spheres to represent the media in examining
aerosol filtration. The flow field was determined using a
modified form of the solution method of Snyder and Stewart
(13). The results predict higher collection efficiencies than
other models and correlate much better with experimental
results.

In aerosol filtration, particle inertia is significant, and
inertial impaction is generally the dominant collection
mechanism; however, in depth filtration of particles from
water, particle inertia is negligible, and inertial impaction is
not a significant collection mechanism. Since their research
concerned aerosol filtration, Gal et al. (12) included deposition
by inertial impaction and neglected gravitational effects. Also,
Gal et al. (12) did not consider hydrodynamic interactions,
an important element for refining the precision of trajectory
calculations performed on hydrosols. Hence, the results of
Gal et al. (12) are not directly applicable to hydrosol filtration.
However, just as explicitly including the effects of grain
interaction has advanced the understanding and accuracy
of aerosol modeling, similar rewards may lie in the application
of the concept to hydrosols.

In the clean bed models discussed above, model-predicted
effects of particle size and surface chemistry deviate sig-
nificantly from experimental results. In general, experi-
mentally measured collection of small particles is greater
than predicted, and collection of large particles is less than
predicted (14, 15). Another area of disagreement between
observed behavior and predictions of current models is the
effect of surface chemistry on particle removal. Current
models predict a step decrease in removal as surface
chemistry becomes unfavorable, whereas observations show
a gradual decrease.

Due to the presence of contact points, an array of spheres
shares critical geometric features with a packed bed. Con-
sider the effect of grains in contact on the critical trajectory
(or trajectory defining regions of fluid flow in which particles
are or are not predicted to collide with the collector) as

dN
dz

) -λoN (1)

ηs(S&I) ) AsNLo
0.125NR

1.875 + 0.003375AsNAG
1.2NR

-0.4 (2)

As )
2(1 - p5)

w
(3)

NLo (London group) ) 4H

9πµdp
2Vo

(4)

NR (relative size group) )
dp

dc
(5)

NG (gravity group) )
dp

2(Fp - F1)g

18µVo
(6)

ηd ) 4Pe-2/3As
1/3 (7)
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illustrated in Figure 1A, after Gal et al. (12); two collectors in
contact produce more collisions than the sum of collisions
for two separated collectors. Currently, three conceptual
mechanisms for particle collection are reported in the
literature: sedimentation, gravity force causing a particle to
cross sreamlines; interception, a particle traveling on a
streamline passing within one particle radius of the surface
of a collector; and Brownian motion, random Brownian
motion or diffusion causing a particle to cross streamlines
and collide with a collector. Figure 1B illustrates a collection
mechanism (collector contact straining) that is possible in
an actual packed bed and in the AOS media model but not
in previously applied models. In general, straining as a
particle separation mechanism is not sensitive to surface
chemistry. Although collector contact straining is limited to
a small fraction of the bed, high removal efficiency over a
small fraction of the available bed may be significant overall,
particularly when surface chemistry is unfavorable. Although
not addressed in this paper, collection in the region near
grain contact points also has ramifications with regard to
deposit distribution, morphology, head loss development,
and other dynamic aspects of filtration.

Model Development. The actual random packing within
a filter is extremely cumbersome to deal with mathematically;
however, regular (periodic) packing schemes allow symmetry
to be developed that simplifies and compresses the math-
ematical representation. Several researchers have presented
mathematical solution methods for flow through regular
geometric packing arrangements (including refs 13, and 17-
20). The porous media model of Snyder and Stewart (13)
was used in this work, and the dense cubic packing
arrangement and associated coordinate system are illustrated
in Figure 2, after Snyder and Stewart (13). Details regarding
the development of the porous media model are available
elsewhere (13, 21, 22).

With media model and associated flow field established,
the deterministic component of the trajectory of a particle
can be determined by resolving the forces and torques acting
on the particle. A schematic representation of the forces

and torques considered in this research is presented in Figure
3. In the model discussed herein and other trajectory models
of aqueous depth filtration, particle inertia is assumed
negligible, particles and media grains are assumed spherical
(given the size differential between particles and media grains,
sphere-plane systems are assumed for some close range
interactions), and all forces act through the center of the

FIGURE 1. Geometric ramifications of filter grain contact ponts. (A)
Influence of collector contact points on critical area. (B) Conceptual
view of collector contact straining.

FIGURE 2. Array-of-spheres media model and associated coordinate
system (after ref 13). (A) Top view. (B) Side view.

FIGURE 3. Forces and torques considered in the trajectory analysis.
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particles except close range hydrodynamic interactions.
Forces considered in this work are gravity and buoyant forces,
drag (through Stokes’ lawscorrected at close range to
collector surfaces), electrical double-layer repulsion, and
London-van der Waals interaction. As a particle approaches
a surface, additional fluid drag is encountered. The shear
force acting on the particle surface facing the collector is
different than that acting on the particle surface facing the
free fluid. This difference in shear forces creates a torque
and hence rotation, and at close range to a collector surface,
a torque balance is also applied.

The critical area is the planar region perpendicular to
bulk flow within which all trajectories result in predicted
collision with the collector. The ratio of the integral of particle
flux through the critical area to the integral of particle flux
through the entire region being considered is predicted
particle removal efficiency. In previously applied models,
the critical area is circular because of the symmetry of
spherical and tubular collectors. Hence, computation of one
trajectory (the critical trajectory) is sufficient to determine
the critical area in these media models. The critical trajectory
is traditionally determined through backward integration
from the rear stagnation point in spherical media models or
the trailing tube boundary in constricted tube models. The
critical area and particle flux in the AOS model is irregular,
and numerous trajectories must be determined to define the
boundaries of the area.

To compute unit cell efficiency, one-eighth of the top
plane of the unit cell was divided into a computational grid.
A computer algorithm was developed that determined the
boundary of the critical area by evaluating trajectory results.
Particle trajectories were calculated from a starting value of
z ) x2 to z ) -x2 or until the particle collided with a media
grain or became effectively immobilized in a secondary
minimum. The integral of the product of area and velocity
normal to the computational grid is equivalent to particle
flux into the unit cell for a homogeneous suspension. The
unit cell efficiency was thus determined as the ratio of flux
through the critical area to total flux through the compu-
tational grid. A conceptual illustration of the computational
grid is shown in Figure 4. A sensitivity analysis was performed
on grid resolution, and considering sensitivity and compu-
tational expense, a grid resolution of 240 divisions per
collector radius was selected.

The particle trajectory is defined by two first-order
ordinary differential equations. These equations were solved
using a fifth-order Runge-Kutta method with variable step
size (23) coded in FORTRAN. Program development was

performed on a 486-PC; reported results were calculated at
single precision on a Cray Y/MP computer. Impact of
numerical method tolerance was examined; solutions co-
incide for tolerances less than or equal to 10-8.

Results and Discussion
Qualitative Trends. Critical collection regions under various
conditions are shown in Figure 5. As discussed above,
trajectories were calculated for particles originating at the
position z ) x2 and at each X* and Y* location as indicated
in the computational grid of Figure 4. The fate, i.e., passage
or collection, of particles defines the critical collection region.
All particles originating inside the region are collected, while
those outside pass through the cell. Thus, the collection
efficiency is related to the area associated with the critical
collection region. For example, a collection efficiency of zero
would have no critical collection region, and a plot of the
form shown in Figure 5 would have no shading; conversely,
if a collection efficiency were 100%, the entire plot would be
shaded. Because of the symmetry of the AOS unit cell, the
critical collection region for only one-quarter of the unit cell
is shown.

The critical areas of the AOS model, as shown in Figure
5, are more complex than the circular critical areas of
previously applied media models but do possess a degree of
symmetry. Areas of collection consist of a central collection
region with areas extending away from the center as “spokes”
from the origin in the x and y directions and at a slope of 1.
The directions of these spokes correspond to locations of
collector-collector contact points within the AOS cell and
represent collection associated with filter grain contact points.

Figure 5A illustrates the effect of change in velocity on
critical area (and hence removal efficiency). Critical areas
are shown for collection of a 6.3 µm diameter particle by a
1.85 mm diameter filter grain at approach velocities of 0.5
mm/s (0.7 gpm/ft2) and 5.5 mm/s (7.9 gpm/ft2). Other
parameter values used in the simulations include temperature
of 25 °C and a Hamaker’s constant of 1.0 × 10-15 g-cm2/s2.
Critical area decreases as velocity increases, meaning that
removal decreases with increasing velocity, as expected. As
the area of the critical region decreases, the characteristic
shape is maintained.

The effect of particle diameter on critical area is shown
in Figure 5B. For media grain size of 1.85 mm, approach
velocity of 0.45 mm/s (0.7 gpm/ft2), and other parameters
constant, critical areas for 1.0 µm and 6.3 µm diameter
particles are shown. The figure shows that critical area
decreases as particle size decreases, indicating the expected

FIGURE 4. Conceptual view of the trajectory computational grid.
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inverse relationship between particle size and removal for
non-Brownian particles. Again, the characteristic shape of
the critical area, with collection coincidental with contact
points and central region, is maintained.

Predicted single collector efficiency for a range of particle
diameters (dp) and two media diameters (0.8 and 1.8 mm)
at an approach velocity of 1.8 mm/s (2.8 gpm/ft2) is shown
in Figure 6. The general trend for both media sizes is
increasing single collector efficiency with increasing particle
diameter, although a slight minimum exists at approximately
log(dp) ) 0.2 (dp ) 3 µm). Trajectory calculations were strictly
deterministic; Brownian, or diffusional, influence was not
included. Hence, this particle size of minimum removal is
not caused by the classic effect of diminishing Brownian
transport with increasing particle size. Using other porous
media models, similar minimums have been identified
previously (14). This minimum is caused by counteracting
effects of enhanced collision opportunity by (primarily)
interception and increased hydrodynamic retardation as
particle size increases. For the larger media size (dc ) 1.8
mm), the location of this minimum in single collector
efficiency occurs at a slightly greater particle size. The larger
media size also exhibits significantly greater single collector
efficiency at larger particle sizes (log dp > ∼1; dp > ∼10 µm).
Both of these phenomena are caused by the lower hydro-
dynamic interaction associated with the larger interstitial
space of the larger media.

Sensitivity of the model to changes in approach velocity
is illustrated in Figure 7. Removal decreases with increasing
velocity, as expected. As velocity increases, the dependence
on particle diameter is reduced. This reduced dependence
is caused by two coupled effects. First, hydrodynamic
interaction increases as approach velocity increases. Second,
larger particles are effected to a greater extent by these
hydrodynamic influences. As with the media size comparison
above, a slight minimum exists at about 3 µm (log dp ) 0.2).
At the highest velocity (5.5 mm/s), a slight maximum is
evident at about 10 µm (log dp ) 1.0); this is again caused
by counteracting interception collection and hydrodynamic
retardation. In trajectory modeling, a maximum in the
relationship between clean bed removal and particle diameter
has not been reported previously. Mackie et al. (23), however,
noted a similar trend during dynamic simulation after
significant deposition has taken place. Because of the lower
porosity, the interstitial velocity and hence hydrodynamic
interaction is greater in the AOS model than in spherical or
tubular models as they have been applied to trajectory
analysis. The relationship between removal in the low
porosity, densely packed unit cell of the AOS media model
and the greater porosity, randomly packed bed of a filter is
discussed subsequently.

A comparison of AOS model, Happel’s model, and
experimental response to changes in electrical double-layer
repulsion is presented in Figure 8. The ordinate of the plot
is the logarithm of the ratio of single collector efficiency under
a given chemical condition (η) to single collector efficiency
under ideal chemical conditions (ηo). An ordinate value of
zero (i.e., η/ηo ) 1) represents removal under ideal conditions,
and relative removal decreases as ordinate values decrease.

FIGURE 5. Characteristic shape of critical collection region.

FIGURE 6. Model sensitivity to media size.

FIGURE 7. Model sensitivity to approach velocity.
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The abscissa is the negative logarithm of the calcium ion
concentration. As abscissa values increase, calcium con-
centration decreases and electrical double-layer repulsion
increases. Trajectory analysis applied to Happel’s sphere-
in-cell model (solid line) predicts an abrupt (almost step)
decrease in removal at some critical value of calcium
concentration (6); this sharp decrease in predicted removal
coincides with the onset of a net repulsive force between
particle and media. The experimental results (6) show a
much more gradual decline as chemical conditions dete-
riorate. These trends are consistently reported for other
currently used porous media models (constricted tube and
isolated sphere) and other experimental results. Removal
predictions based on the AOS porous media model (dashed
line), however, remain basically unchanged as electrical
double-layer repulsion increases. This total lack of sensitivity
is an artifact of the AOS model. A particle close enough to
a sphere to experience specific hydrodynamic influence drifts
in the direction of least velocity. In the AOS media model,
velocity in the bulk fluid has a minimum corresponding to
locations of grain contact points. Even when a net repulsion
exists that does not allow attachment of particles to collectors,
the particles are “funneled” toward collector contact points
and become hydrodynamically trapped. In an actual packed
bed, a number of variables would preclude or severely limit
this type of collection: random packing within an actual bed
as opposed to the cubic symmetry of the AOS media model,
nonspherical collectors and particles, Brownian motion of
particles, and deviation of the fluid flow regime from the
creeping flow assumption.

Although collection in secondary minima is damped by
these nonidealities, migration toward contact points likely
occurs to some extent in actual packed beds during both
favorable and unfavorable surface chemistry conditions.
Photographic evidence (25) shows a majority of retained
particles located near grain contact points. Similar observa-
tions were made through the Plexiglas walls of laboratory-
scale filter columns during experiments performed in the
authors’ laboratory; note, however, that wall effects may
prevent any conclusive statement using this type of observa-
tion technique. These observations are indicative of migra-
tion toward grain contact points. However, whether the
migration occurs in the bulk fluid during transport to the
collector or along the surface after collision cannot be
inferred. Only the former case is considered in the current
modeling effort; however, Clark et al. (26) speculated that
migration along grain surfaces after collision might occur.

Comparison to Experimental Data. To calculate removal
in a filter, output of the trajectory model (single collector
efficiency, ηs) must first be converted to filter coefficient (λ).
The transformation from single collector efficiency to filter

coefficient entails compensating for the difference between
the porosity of the media model and that of the actual filter
bed. The low porosity in the densely packed media model
can be compensated for by supplying additional void volume
in parallel. This method shares the idea of parallel flow
distribution within the bed with Payatakes and Tien’s (27)
unit bed element concept of the filter bed. In their approach,
parallel elements can have different sizes and/or geometries,
but each individual element has the same porosity as the
entire bed. In an actual randomly packed filter bed, the
packing density varies spatially, between densely packed
regions and bridged, relatively void regions.

Constraints and assumptions of the derivation of the
relationship between single collector efficiency and filter
coefficient with parallel flow distribution are as follows:

(a) The deficit in porosity is accounted for by additional
void space acting in parallel with the AOS unit cell.

(b) The additional void space is represented as a capillary
tube of length equal to that of the AOS unit cell.

(c) Diameter of the void tube is such that resulting overall
porosity is equal to that of the packed bed.

(d) Flow distribution is such that head loss across the
void tube and the AOS unit cell is equal.

(e) No particle collection occurs in the void tube. Applying
the above constraints and assumptions, the ratio of fluid
flowing into the AOS unit cell (QAOS) to fluid flowing into the
entire bed (Qtotal) is found to be

where εAOS is the porosity of the AOS models0.26 for the
dense cubic packing of spheres and εtotal is the prosity of the
randomly packed beds0.39 for the following comparisons.
A detailed derivation of the above relationship is available
elsewhere (22). Given the assumption that the influent
particle concentration to any section of the filter is homo-
geneous, the flow distribution ratio (θ) represents the fraction
of particles entering a filter section that pass into the AOS
unit cell.

In the parallel void deficit compensation scheme, single
collector efficiency (ηs) is related to filter coefficient by

Since only a fraction of the total flow into the filter passes
through the AOS unit cell, the superficial velocity of the AOS
unit cell is different than that of the entire filter. The
relationship between superficial velocity of the filter (Vo) and
the superficial velocity of the AOS unit cell (uAOS) was derived
under the assumptions and constraints listed above (22).
The resulting relationship is

The AOS unit cell superficial velocity is the velocity that
influences particle trajectories within the AOS porous media
model. For any given filtration rate, the corresponding AOS
unit cell superficial velocity must be used to calculate particle
trajectories and removal.

To facilitate use of the trajectory results, a correlation for
single collector efficiency was developed. As shown above,
modeling of the effect of surface chemistry was not successful;
hence, the correlation is based on trajectory results with no
electrical double-layer interaction. The relationship among

FIGURE 8. Effect of surface chemistry on trajectory model predictions
(Happel’s model prediction and experimental results from ref 6).
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the dimensionless groups NLo, NG, and NR proposed by
Rajagopalan and Tien (4) was used (presented above as eqs
2-6).

Nonlinear multivariate regression analysis was performed
using the statistical package SPSS for Windows (27, 28) on
a PC/486 microcomputer. The regression was performed
using the Levenberg-Marquardt Method (24). Data used
for the regression represented particle diameters between 1
and 15 µm, particle densities of 1.05 and 2.45 g/cm3, media
diameters from 0.4 to 1.8 mm, and approach velocities from
0.9 to 7.5 mm/s (1.3 to 10.8 gpm/ft2).

Inserting the resulting coefficient and exponent values,
the non-Brownian single collector efficiency of the AOS is

The correlation represents the direct model results well, with
an r 2 value of 0.98.

Brownian motion is also important to the transport and
collection of particles on the order of 1 µm and smaller.
However, introduction of Brownian transport (diffusion)
leads to nondeterministic behavior and results in trajectories
defined by stochastic differential equations. The problem is
traditionally decoupled using the assumption that the
Brownian and deterministic transport mechanisms are
additive. The arguments presented above showing the need
for a more realistic media model are less important for
diffusion dominated particles. Since Brownian motion
causes random particle displacement, trajectories of such
particles are not so highly coincidental with fluid streamlines.
Thus a model that accounts for neighboring collectors in a
spatially averaged manner, such as Happel’s model, is
appropriate for Brownian collection dominated particles.
Cookson’s solution for convective diffusion in Happel’s
sphere-in-cell model (10; presented above as eq 7) was used

by Rajagopalan and Tien (4) and is also used for the following
experimental and model comparisons.

Below, comparisons are made among AOS and Rajago-
palan-Tien models and the experimental results of Moran
et al. (16). Experimental data were collected during labora-
tory-scale filtration experiments using effluent samples from
the sedimentation basins of a lime-softening water treatment
plant. Elevated pH (∼10) and the addition of ferric chloride
during rapid mix ensured favorable particle surface chemistry;
hence, electrical double-layer interactions are assumed
negligible. The particles consisted primarily of calcium
carbonate, and for the model input, particle density of 2.45
g/cm3 was assumed, and temperature of 25 °C and Hamaker’s
constant of 1.0 × 10-13 g-cm2/s2 were used.

Figure 9 illustrates a comparison of the AOS and Raja-
gopalan-Tien models and experimental results at two
different velocities (1.8 and 5.5 mm/s for parts A and B,
respectively) and with a media size of 0.8 mm. Figure 9A
shows results at a relatively low approach velocity (1.8 mm/
s). The Rajagopalan-Tien model underpredicts small par-
ticle removal and overpredicts large particle removalsresults
typical of sphere-in-cell-based trajectory models. The AOS
model tends to overpredict removal for all particle sizes,
although good agreement is evident in the intermediate size
range of 2-4 µm (0.3 < log dp < 0.65). Sensitivity to particle
size is weaker for the AOS model, with removal efficiency
high for the smallest particles shown and gradually increasing
to (effectively) unity by log dp of 1 (10 µm). Because the
Rajagopalan-Tien model exhibits greater sensitivity to
particle size, the two models converge and, under these
conditions, coincide for particles greater than about 3.76 µm
(log dp ) 0.575).

Figure 9B shows a comparison at a relatively high
approach velocity (5.5 mm/s). The removal trends are similar
to part A. However, the Rajagopalan-Tien model does not

FIGURE 9. Effect of velocity: comparison among Rajagopalan-
Tien and AOS models and results of ref 16.

ηs ) 0.029NLo
0.012NR

0.023 + 0.48NG
1.8NR

-0.38 (11)

FIGURE 10. Effect of media size: comparison among Rajagopalan-
Tien and AOS models and results of ref 16.
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represent this higher velocity as well, while the AOS Model
appears to represent this condition better than the lower
velocity (1.8 mm/s; Figure 9A). Both models still overpredict
large particle removal, and the AOS correlation still over-
predicts the low end of the range shown (log dp < 0.15). At
the higher velocity, the models again converge; however, the
particle size at which they meet is greater, dp ) 5.6 µm (log
dp ) 0.75).

The Rajagopalan-Tien model shows a much greater
change in predicted removal with change in velocity than
either the AOS model or the experimental results. The AOS
model’s lack of sensitivity to changes in approach velocity
for small particles is evident in comparing Figure 9, panels
A and B. The experimental results show a similar lack of
sensitivity to this change in velocity.

Figure 10 shows a comparison of the models and
experimental results for two media sizes. The trends
identified in Figure 9 are also evident in Figure 10. Media
size has a more significant impact on both models and
experimental results than velocity. Comparison of parts A
and B of Figure 10 shows that relative sensitivity to these
media sizes is similar for both models and the experimental
results for smaller particle sizes. However, the models are
less sensitive to media size change for larger particles than
are the experimental results. The models tend to bracket
the experimental results of smaller particles, but both
overpredict removal of larger particles. Overprediction of
removal of larger particles by both models is greater for the
larger media size (1.85 mm; part B). This overprediction
leads to poorer representation of large particle removal by
both models at the larger media size.

Discussion
Deep bed filtration represents a major challenge with respect
to mathematical modeling. In reality, filters have random
packing with highly complex flow fields, even in highly
idealized laboratory-scale reactors with uniform spheres as
the packing media. At this time, mathematical modeling
cannot capture completely the breadth of complexity present
in real filters. The model developed in this paper represents
a first attempt to capture some of the complexity associated
with the fact that filter grains are in contact with one another.
These grain contact points influence flow field and collector
geometry and therefore should influence the removal of
particles. Previous filtration models based on a single
collector (sphere or tube) approach have included the net or
average effect of neighboring collectors on flow (and head
loss) through, for example, the use of Happel’s model, but
all to date have ignored the direct effect of contact points.

To consider contact points, the model developed in this
research necessarily had its own set of idealized conditions.
One primary idealization was the choice of the dense cubic
packing arrangement of spherical filter grains, a choice made,
among other reasons, because the flow field had been solved
by previous investigators. The flow field solution of Snyder
and Stewart (13) is itself an approximation, a correlation
approximating the conditions set forth by the geometry,
Navier-Stokes equation under creeping flow, and the
continuity equation. The dense packing required, in turn,
a porosity correction, and like the Happel model, it is correct
for the net or average flow and head loss but imposes error
in terms of particle capture. While aware of that potential
error and the idealizations, the authors believe the assump-
tions and methodology provide some insight, at least
qualitatively, to particle capture in filtration that cannot be
obtained from models that ignore contact points.

The model suggests, first, that contact points do influence
capture of particles and to a significant degree. This result
is not a simple factor of straining (particles too large to fit
through the small spaces near contact points) but of complex

hydrodynamics that funnel particles toward contact points
and also make the region near contact points stable regions
of collectionsforces on particles are balanced in these
regions, immobilizing them. Second, the model results give
ranges of particle size (and possibly filtration velocity and
particle density) in which capture is much less effected by
these variables than previous models. Experimental results,
not only from our own laboratory (16) but from others like
the classic results of FitzPatrick and Spielman (30), suggest
that previous models such as Rajagopalan and Tien (4, 5)
might be overly sensitive to these variablessi.e., the models
show greater sensitivity to these variables than is found
experimentally. The model proposed in this paper is
apparently less sensitive to these variables than is found
experimentally; reality seems to lie somwhere between the
predictions of the two types of models.

The model also is, quite clearly, imperfectsthe fact that
the results (at least in the ranges chosen for this study) are
insensitive to chemical effects is a serious deficiency. This
result might be an artifact of the idealized geometry model
that leads to particle stagnation points based on hydrody-
namics alone. Real filters with random packing do not have
these points of symmetry that cause the mathematical result.
Again, existing models overpredict the sensitivity to chemical
conditions whereas this model underpredicts that sensitivity.

In summary, the model developed in this paper shows
promise while still requiring further development. Filtration
modeling that explicitly accounts for the detailed flow field
around collectors, including the effects of contact points
among adjacent collectors, apparently correctly accounts (at
least qualitatively) for and provides some insight into some
phenomena that are observed in real filters.
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