

TABLE 1. Chemical Analyses (wt %) of the Fly Ash Samples Used in This Study

fly ash	Hatfield	Rivesville	Armstrong
SiO ₂	48.41	53.08	43.05
Al ₂ O ₃	24.13	22.49	22.26
Fe ₂ O ₃	14.84	10.16	20.21
CaO	4.26	1.56	1.59
SO ₃	0.64	0.08	0.05
MgO	0.94	0.54	0.54
Na ₂ O	0.68	0.37	0.24
K ₂ O	1.56	1.75	1.88
P ₂ O ₅		0.33	0.31
moisture content	0.22	0.22	0.67
loss on ignition	2.60	8.35	8.53
totals	98.28	98.93	99.33

TABLE 2. Phases Typically Present in Zeolitized Class F Fly Ash Samples^a

temp (°C)	concn NaOH molarity	curing time of samples		
		1 day	3 days	7 days
60	0.1	nr	nr	nr
60	3	nr	nr	tr zeolite X (Na)
90	0.1	nr	nr	nr
90	3	zeolite X (Na)	zeolite X (Na)	zeolite Na-P1, Y (Na)
150	0.1	nr	nr	nr
150	3	analcime	analcime, sodalite	analcime, sodalite

^a Phases present in the fly ash (i.e., mullite, quartz, and glass) were unchanged: nr, no reaction; tr, trace. When zeolites did form, they formed in varying amounts depending on reaction conditions. At best conversions were ~50%. Mullite, quartz, and glass tended to continue to coexist with the zeolites.

Typically, 5 g of fly ash, 12.5 g of sodium hydroxide solution (0.1 or 3 M), and 1 g of salt (NaCl) were mixed and heated at 60, 90, and 150 °C in Teflon-lined hydrothermal pressure vessels (Parr bombs) for varying lengths of time (1, 3, and 7 days). The samples made with 3 M NaOH solution showed a greater degree of fly ash conversion and also produced a wider range of zeolites compared to those containing 0.1 M NaOH. Experience has shown that 90 and 150 °C are optimum conditions for forming potential adsorbents (zeolites). The results in Table 2 are intended to show that the different zeolites that formed depended more on temperature and time of reaction than the composition of the fly ash; that is, carbon content did not effect phase formation. In addition to air-drying, a few of the zeolites were also dried to constant weight in a microwave oven for about 8–10 min prior to testing for SO₂ adsorption.

Methods. A simulated stack gas containing ~2000 ppm SO₂, 10% O₂, 10% CO₂, and 80% N₂ was used throughout the experimental program. The apparatus (Figure 1) consists of an adsorber cell made to contain the zeolite samples and a spectrophotometer to record concentrations of SO₂ in the effluent gas stream. The adsorber cell is 10 cm in length and 1 cm in diameter and contains a glass frit which supports the zeolite as the simulated stack gas passes through the sample. Typically 2 g of sample was placed in the adsorber cell and the simulated stack gas was passed through the sample at a constant 10 cm³/s flow rate. Breakthrough curves for SO₂ in the effluent gas were determined by passing the “zeolite-treated” gas through a glass adsorption cell made to fit in a 2300 UV/vis Varian spectrophotometer tuned to measure SO₂’s adsorption band at 284 nm. The adsorption cell pictured in Figure 1 was fitted with quartz end plates to make it transparent to this wavelength. The cell measures 10 cm in

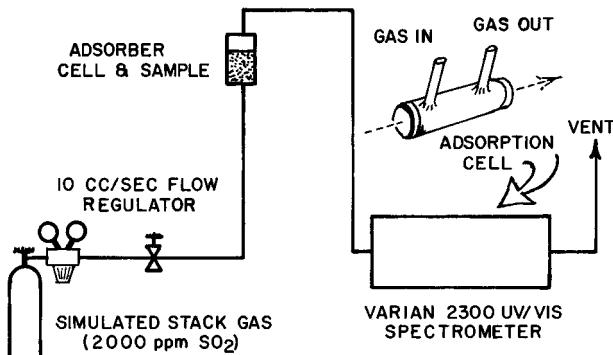


FIGURE 1. Schematic representation of experimental set up used to test SO₂ adsorption.

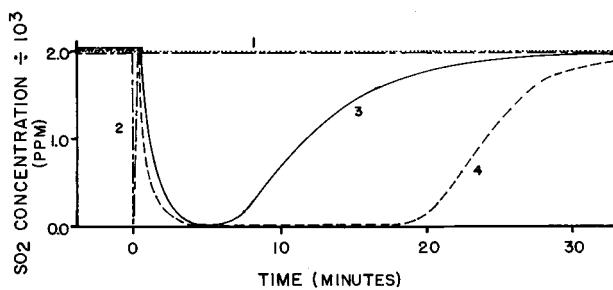


FIGURE 2. Breakthrough curves for various conditions: (1) baseline, (2) sand, (3) 110 °C air-dried zeolite, and (4) microwaved-dried zeolite.

length and is ~2.5 cm wide. To date, all adsorption experiments were conducted using room temperature gas.

To calibrate the apparatus, we carried out two experiments. The simulated flue gas was passed first through an empty adsorption column and then through the same column filled with quartz sand. The concentration of effluent SO₂ was monitored (without adsorption by zeolites) using SO₂’s adsorption band at 284 nm as a function of time (Figure 2, traces 1 and 2). As expected, there was little or no perturbation to the SO₂ content of the gas. The baseline (Trace 1) is essentially flat because the SO₂ in the gas is adsorbing some of the 284 nm wavelength beam of light. The quartz sample (Trace 2) suggests that some adsorption occurs, but it is very short-lived. Once the apparatus was calibrated, the relative SO₂ adsorption efficiencies of the various zeolites were estimated from their breakthrough curves and total sulfur analyses.

Results and Discussions

Characterization. X-ray diffraction patterns of the three fly ashes revealed that they were composed mainly of a silica-rich glassy phase ($2\theta \sim 24\text{--}26^\circ$) with minor amounts of mullite ($\text{Al}_6\text{Si}_2\text{O}_{13}$) and quartz (SiO_2). See Figure 3 for a representative X-ray diffraction pattern of the Rivesville fly ash. Treating the fly ash with 3 M NaOH at 90 °C resulted in the formation of crystalline zeolite X ($\text{Na}_2\text{Al}_2\text{Si}_{1.5}\text{O}_{9.6}\cdot 2\text{H}_2\text{O}$) at 1 day (see Figure 4), and a combination of zeolite Y ($\text{Na}_2\text{Al}_2\text{Si}_{4.5}\text{O}_{13}\cdot \text{XH}_2\text{O}$) and zeolite Na-P1 ($\text{Na}_6\text{Al}_6\text{Si}_{10}\text{O}_{32}\cdot 12\text{H}_2\text{O}$) at 7 days (see Figure 5). At 150 °C, zeolite-like analcime C ($\text{Na}(\text{Si}_2\text{Al})\text{O}_6\cdot \text{H}_2\text{O}$) and sodalite ($\text{Na}_4\text{Al}_3\text{Si}_3\text{O}_{12}\text{Cl}$) (see Figure 6) formed instead. These results are similar to those found in the literature, suggesting that the synthesis process is relatively insensitive to starting material composition, more so a function of temperature and time. It was also shown that the original fly ash reacted to different degrees as evidenced by the shift in the amorphous hump attributed to the fly ash from $\sim 24\text{--}26^\circ$ to $31\text{--}32^\circ$. This latter peak position is characteristic of hydrated calcium silicate cement-based

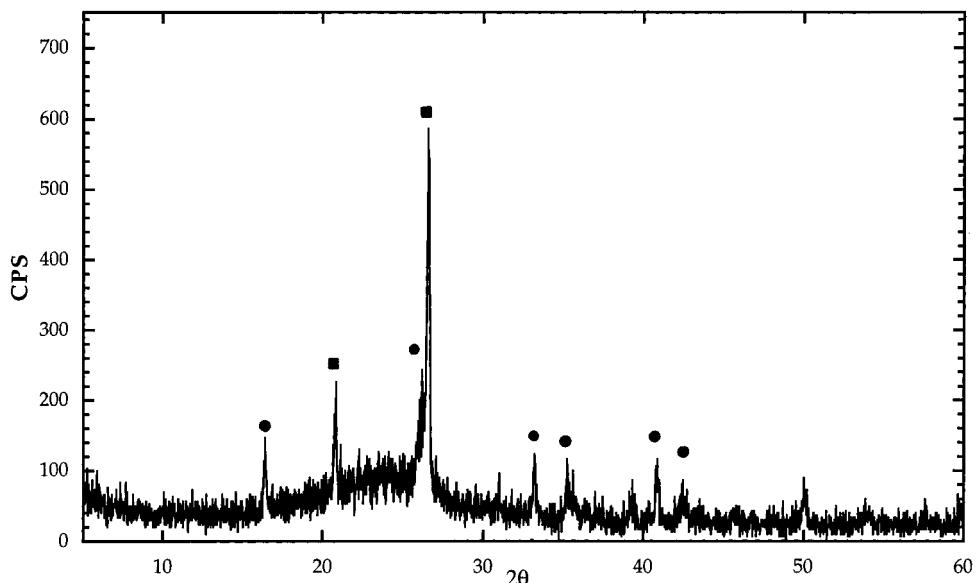


FIGURE 3. Representative sample of fly ash typical of Class F fly ash produced by Allegheny Power: (●) = mullite, (■) = quartz.

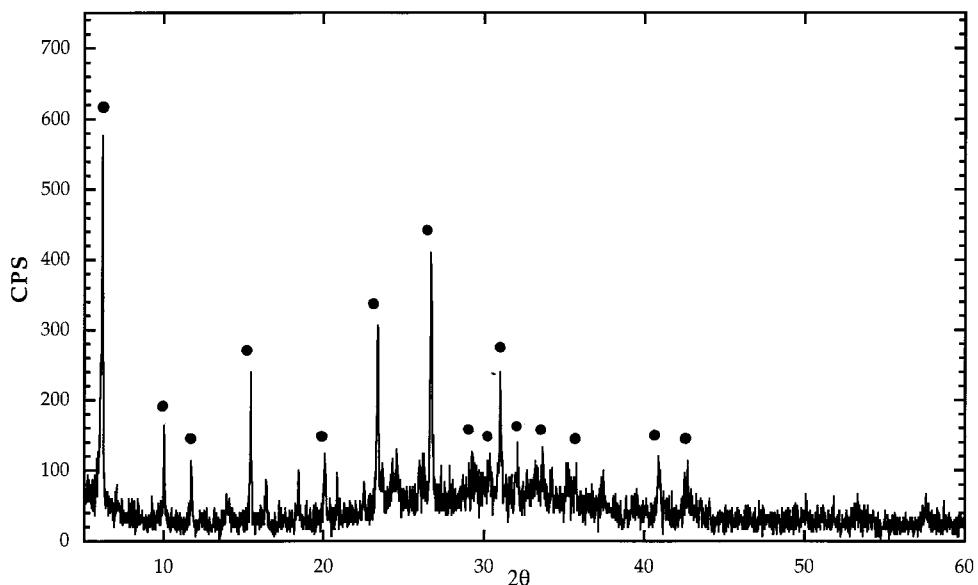


FIGURE 4. Fly ash cured with 3 M NaOH at 90 °C for 1 day: (●) = zeolite X (Na).

materials. Samples at 150 °C normally contained less residual glass than their lower-temperature counterparts. Results of the systematic study are given in Table 2. Each of these samples exhibited different adsorption capacities when exposed to SO₂-containing flue gas.

Comparison of Zeolite SO₂ Adsorption Characteristics. As noted earlier, the breakthrough curves for the test runs made without any zeolites are given in Figure 2. Flow rates were held constant at 10 cm³/s. Trace 1 runs parallel to the abscissa (time in minutes), indicating that the concentration of SO₂ in the gas remained constant with time. The sample column was then filled with coarse sand and the gas passed through at the same flow rate. The resulting breakthrough curve (Trace 2) showed little/no adsorption of the gas by the sand; the graph returned to its initial concentration with little, if any, time lag. The next step involved the evaluation of the synthesized zeolites. It was reasonably assumed that sample densities were approximately the same, so the gas was passed through equal weights (2 g) of finely ground portions of the various samples until the SO₂ in the treated gas returned to its initial concentration. Trace 3 represents the behavior typical of a zeolite-containing sample, in this

instance an air-dried analcime/sodalite-containing sample cured at 150 °C for 7 days. The breakthrough curve shows that, once the cell was loaded with the zeolite, the concentration of SO₂ in the effluent dropped and remained at zero for nearly 7 min (treating approximately 4 L of gas) and then gradually recovered as the zeolite became saturated with SO₂. Note that the equivalent microwave-dried zeolite sample (Trace 4) remained at zero for a considerably longer period of time (20 min) and therefore was able to adsorb about three times as much SO₂ than its air-dried counterpart.

Additional breakthrough curves for SO₂ adsorption for microwave-dried zeolite samples are given in Table 3 and in Figure 7. Those pictured are typical of the samples that were studied. It is evident from the plot that the analcime–sodalite mixture (Trace 1) was a more effective adsorbent than either zeolite X (Trace 2) or a zeolite Y–Na–P1 combination (Trace 3) synthesized at 90 °C for 3 and 7 days, respectively. Interestingly enough, fly ash source played little role in the adsorption process. Temperatures governed the nature of the zeolites that formed, and these were always the same at a given temperature regardless of the carbon content of the fly ash. As a check, the zeolite samples pictured in Figure 7

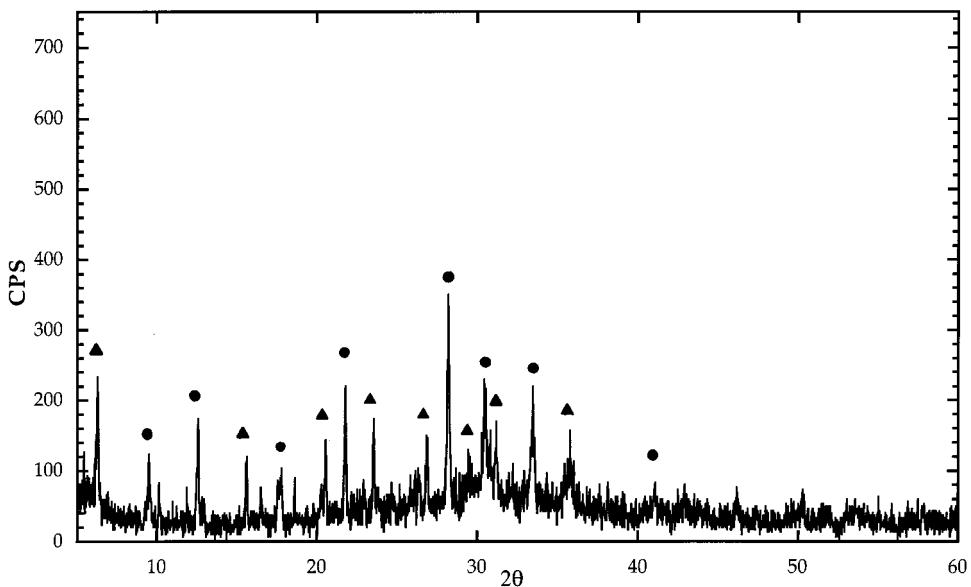


FIGURE 5. Fly ash cured with 3M NaOH at 90 °C for 7 days: (●) = zeolite Na-P1, (▲) = zeolite Y (Na).

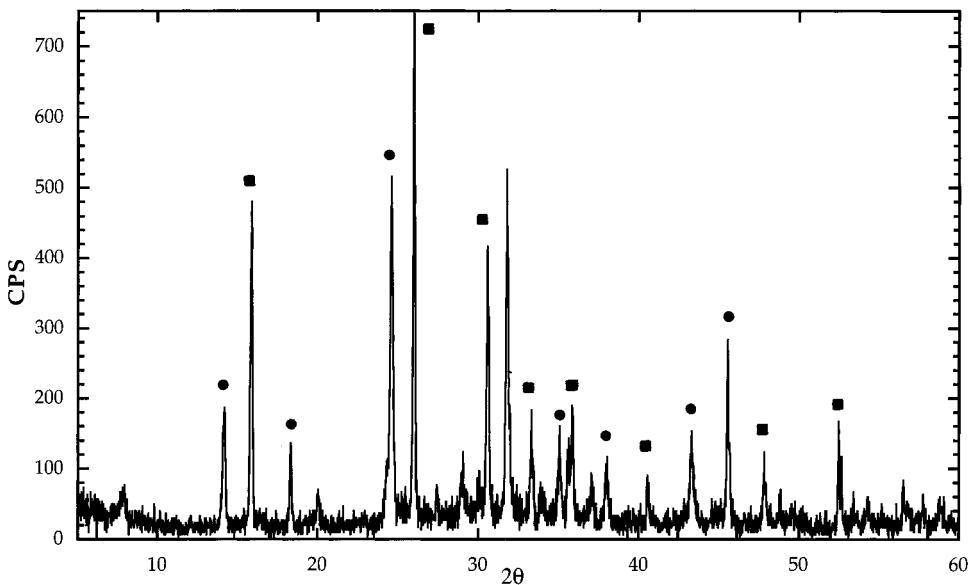


FIGURE 6. Fly ash cured with 3 M NaOH at 150 °C for 7 days: (●) = sodalite, (■) = analcime.

TABLE 3. Time to Breakthrough of the Class F Fly Ash Samples (Minutes)

temp (°C)	concn NaOH molarity	curing time of samples		
		1 day	3 days	7 days
60	0.1	nil	nil	nil
60	3	nil	nil	nil
90	0.1	nil	nil	nil
90	3	trace	trace	trace
150	0.1	nil	nil	nil
150	3	trace	7	22

were independently analyzed for their total sulfur content using a Leco total sulfur analyzer (Table 4). It was calculated that the analcime–sodalite sample adsorbed about 6–7 mg of SO₂/g of sample which is in keeping with sulfur uptake using breakthrough curve calculations.

SEM Analyses. As a final step, the microstructure of the 90 and 150 °C samples was compared and contrasted. Figure 8 represents a sample prepared from the Hatfield Class F fly ash at 90 °C for 7 days. Figure 8a depicts a remnant fly ash

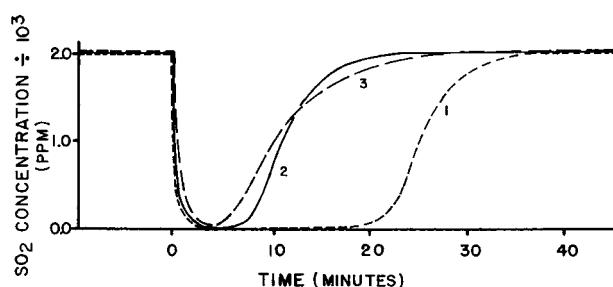


FIGURE 7. Breakthrough curves for treated fly ash samples containing the following zeolites: (1) sodalite plus analcime, (2) zeolite X (Na), (3) zeolite Y (Na), and (4) zeolite Na-P1.

sphere covered with Na-P1 crystals while Figure 8b from the same sample contains a cluster of Na-P1 crystals. Figure 9 represents a sample of Rivesville Class F fly ash treated at 150 °C for 7 days. At the higher temperatures large spherical analcime crystals are seen to coexist with smaller sodalite crystals in both views (a and b). Clearly both fly ashes undergo zeolitization. Note that, in each case, there is a measurable

TABLE 4. Total Sulfur Analyses of Zeolitized (7 days, 150 °C, 3 M NaOH) Fly Ash Samples

sample	fly ash before adsorption testing S content (wt %)	sample after testing S content (wt %)	SO ₂ capacity (Mg SO ₂ /g of solid)
Rivesville	0.21	0.51	6.0
Hatfield	0.36	0.69	6.6

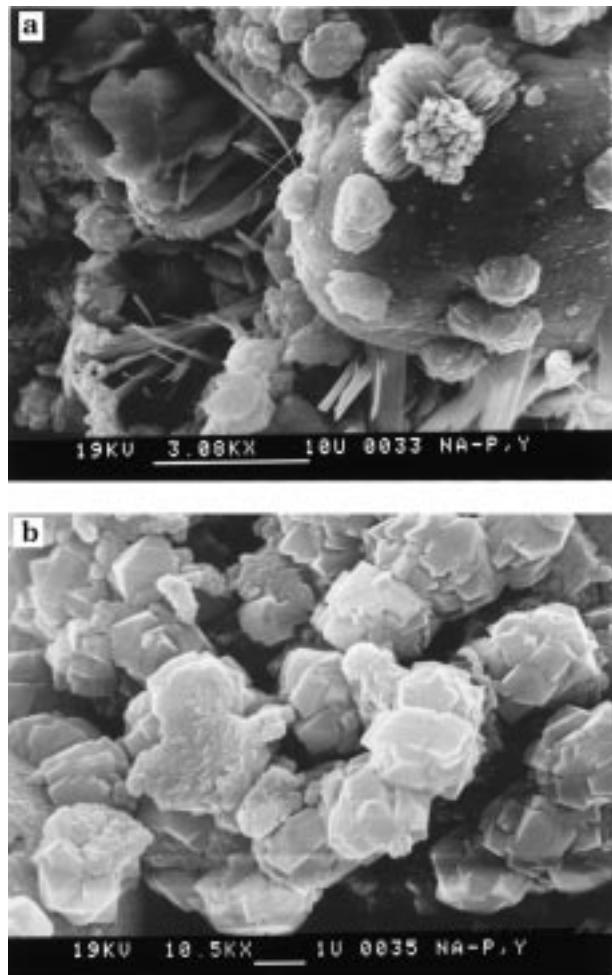


FIGURE 8. Zeolite formation in a sample of Hatfield Class F fly ash that was mixed with 3 M NaOH and reacted at 90 °C for 7 days: view a, fly ash grain (upper right) with overgrowths of zeolite Na-P1; view b, zeolite Y. Bars at bottoms of photos are 10 and 1 μ m long, respectively.

amount of agglomeration which increases the particle size of the reacted grains, e.g., Figure 8b. Also of note is the fact that analcime crystals tend to nucleate and grow on the scoriaceous carbon particles present in the sample. The fact that agglomeration occurs can be used to one's advantage if the material is to be used in a fixed bed adsorber. Chemical adjustments can be made to encourage or discourage the process.

Adsorption of SO₂ on utility-synthesized zeolites has the potential of becoming an effective and perhaps even a cost-effective way of removing SO₂ from flue gases. Note that the reported data represent minimum values inasmuch as some of the glassy material attributed to the fly ash was still present in these samples. With further reaction and microwave treatment, this value could very well approach that reported in the literature (2, 3) for Silicalite (\sim 20 mg of SO₂/g). Continuing studies to maximize reactivity and evaluate the

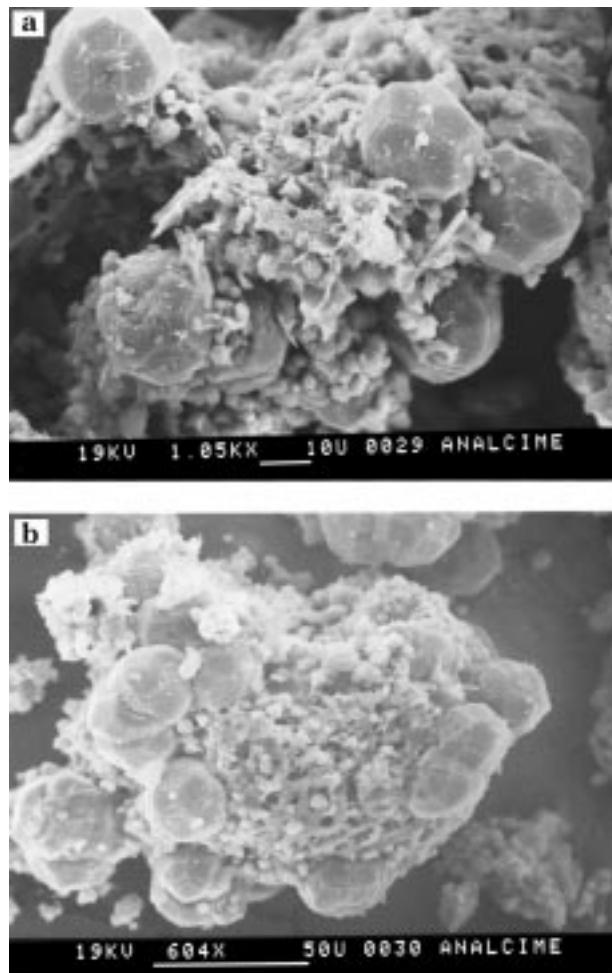


FIGURE 9. Zeolite formation in a sample of Rivesville Class F fly ash that was mixed with 3 M NaOH and reacted at 150 °C for 7 days. Both micrographs depict prominent analcime formation. Bars at bottoms of photos are 10 and 50 μ m long, respectively.

adsorption capacity of fly ash-based zeolites at different temperature and pressure conditions are in progress.

Acknowledgments

This work was supported by a grant from the U.S. Department of Energy FETC (DE-FG22-96PC9621). Thanks also to Allegheny Power and PP&L for supplying fly ash samples.

Literature Cited

- 1) Moore, W. E. *Proceedings of 5th Annual Contractors Meeting on Contaminant Control in Coal-Derived Gas Streams*; 1, U.S. Department of Energy, Morgantown, WV; May 1995.
- 2) Chriswell, C.; Gollakota, S. *Adsorption of Sulfur Dioxide from Combustion Gases on a Regenerable Molecular Sieve*; Preprints of Papers, American Chemical Society, Div Fuel Sci.; Vol. 32 (1), pp 505–512, 1987.
- 3) Gollakota, S.; Chriswell, C. D. Study of an Adsorption Process using Silicalite for Sulfur Dioxide Removal from Combustion Gases. *Ind. Eng. Chem. Res.* **1988**, 27, 139–143.
- 4) LaRosa, J.; Kwan, S.; Grutzeck, M. W. Zeolite Formation in Class F Fly Ash Blended Cement Pasters. *J. Am. Ceram. Soc.* **1992**, 75, 1574–1580.
- 5) LaRosa, J.; Kwan, S.; Grutzeck, M. Self-Generating Zeolite Cement Composites. *Mater. Res. Soc. Symp. Proc.* **1992**, 245, 211–216.
- 6) Grutzeck, M. W.; Siemer, D. D. Zeolites Synthesized from Class F Fly Ash and Sodium Aluminate Slurry. *J. Am. Ceram. Soc.* **1997**, 80, 2449–2453.
- 7) Grutzeck, M. W. Zeolite Synthesis from Fly Ash and Cement Kiln Dust, in *Environmental Issues and Waste Management Technologies II*. *Ceram. Trans.* **1996**, 353–364.

- (8) Henmi, T. Synthesis of Hydroxy-Sodalite ("Zeolite") from Waste Coal Ash. *Soil Sci. Plant Nutr.* **1987**, *33*, 517–521.
- (9) Mondragon, F.; Rincon, F.; Sierra, L.; Escobar, J.; Ramirez, J.; Fernandez, J. New Perspectives for Coal Ash Utilization: Synthesis of Zeolitic Materials. *Fuel* **1990**, *69*, 263–266.
- (10) Shigemoto, N.; Shirakami, K.; Hirano, S.; Hayashi, H. Preparation and Characterization of Zeolites from Coal Ash. *Nippon Kagaku Kaishi* **1992**, *484*–492.
- (11) Shigemoto, N.; Hayashi, H.; Miyaura, K. Selective formation of Na-X Zeolite from Coal Fly Ash by Fusion with Sodium Hydroxide prior to Hydrothermal Reaction. *J. Mater. Sci.* **1993**, *28*, 4781–4786.
- (12) Chang, H.-L.; Shih, W.-H. Conversion of Fly Ashes to Zeolites for Waste Treatment. Environmental Issues and Waste Management Technologies; Jain, V., Palmer, P., Eds.; *Ceramic Transactions* 1995, Vol. 61, 81–88.
- (13) Lin, C.-F.; Hsi, H.-C. Resource Recovery of Waste Fly Ash: Synthesis of Zeolite-like Materials. *Environ. Sci. Technol.* **1995**, *29*, 1109–1117.
- (14) Park, M.; Choi, J. Synthesis of Phillipsite from Fly Ash. *Clay Sci.* **1995**, *9*, 219–229.
- (15) Querol, X.; Alastuey, A.; Fernandez-Turiel, J. L.; Lopez-Soler, A. Synthesis of Zeolites by Alkaline Activation of Ferro-Aluminous Fly Ash. *Fuel* **1995**, *74*, 1226–1231.
- (16) Shigemoto, N.; Sugiyama, S.; Hayashi, H.; Miyaura, K. Characteristics of Na-X, Na-A, and Coal Fly Ash Zeolites and their Amorphous Precursors by IR, MAS NMR and XPS. *J. Mater. Sci.* **1995**, *30*, 5777–5783.
- (17) Shih, W.-H.; Chang, H.-L.; Shen, Z. Conversion of Class-F Fly Ash into Zeolites. *Mater. Res. Soc. Symp. Proc.* **1995**, *371*, 39–44.
- (18) Singer, A.; Berkagatit, V. Cation Exchange-Properties of Hydrothermally Treated Coal Fly Ash. *Environ. Sci. Technol.* **1995**, *29*, 1748–1753.
- (19) Amrhein, C.; Haghnia, G. H.; Kim, T. S.; Mosher, P. A.; Gagajena, R. C.; Amanios, T.; de La Torre, L. Synthesis and Properties of Zeolites from Coal Fly Ash. *Environ. Sci. Technol.* **1996**, *30*, 735.
- (20) Suyama, Y.; Katayarma, K.; Meguro, M. NH₄⁺-Adsorption Characteristics of Zeolites Synthesized from Fly Ash. *Chem. Soc. Jpn.* **1996**, *136*–140.
- (21) Querol, X.; Alastuey, A.; Lopez-Soler, A.; Plana, F.; Andres, J. M.; Juan, R.; Ferrer, P.; Ruiz, C. R. A Fast Method for Recycling Fly Ash: Microwave-Assisted Zeolite Synthesis. *Environ. Sci. Technol.* **1997**, *31*, 2527–2533.
- (22) Breck, D. W. *Zeolite Molecular Sieves*, John Wiley & Sons: NY, 1973.
- (23) Gottardi, G.; Galli, E. *Natural Zeolites*, Springer-Verlag: Berlin, Germany; 1985.
- (24) *Reviews in Mineralogy*, Vol. 4, Mineralogy and Geology of Natural Zeolites; Mumpton, F. A., Ed.; Mineral Society of America: Washington; 1977.
- (25) Hawkins, D. B. Kinetics of Glass Dissolution and Zeolite Formation under Hydrothermal Conditions. *Clays Clay Min.* **1981**, *29*, 531–540.
- (26) Barthomeuf, D. Basic Zeolites: Characterization and Uses in Adsorption and Catalysis. *Catalysis Reviews* **1996**, *38* (4), 521.

Received for review March 3, 1998. Revised manuscript received February 8, 1999. Accepted February 24, 1999.

ES9802091