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Underlying algorithms for designing multivariable decoupling and multiloop PI/PID controllers
in a sequential fashion are addressed. A single-loop technique, composed of biased relay
identification schemes and tuning formulae leading to the minimum weighted integral of square
error, is developed to tune each loop in the predetermined sequence of loop closing. The proposed
tuning technique is appropriate for a wide range of process dynamics in a multivariable
environment. A method is then proposed to design decouplers to compensate for the effect of
interactions and tune the resultant weakly interacting, single-loop PI/PID controllers sequen-
tially. The decouplers, together with the single-loop controllers, constitute the multivariable
decoupling controller. If the interactions are not significant, multiloop PI/PID controllers, which
do not incorporate decouplers, could be employed. Simulation and comparative results are shown
for one 2 × 2 and one 3 × 3 multivariable system from the literature. Despite its simplicity,
the proposed design method yields superior multivariable designs on the basis of performance,
robust stability, and integrity.

1. Introduction

Any process capable of manufacturing or refining a
product cannot operate satisfactorily within a single
control loop. Virtually each unit operation requires at
least two control loops to maintain the desired produc-
tion rate and product quality (Shinskey, 1988). A large
number of genuine multiloop control systems, which are
made up of single-input/single-output (SISO) controllers
acting in a multiloop fashion, have been reported
(Vinante and Luyben, 1972; Wood and Berry, 1973;
Ogunnaike and Ray, 1979; Tyreus, 1982). For such
systems, loop interactions can arise and cause difficul-
ties in feedback controller design. Cross-couplings of
the process variables prevent the control engineer to
design each loop independently. Adjusting controller
parameters of one loop affects the performance of
another, sometimes to the extent of destabilizing the
entire system. To ensure stability, many industrial
multiloop SISO controllers are tuned loosely, which
causes inefficient operation and higher energy costs.
There are multiloop design methods that treat the

multiloop system as an entity. Niederlinski (1971)
proposed a heuristic method based on a generalization
of the classical single-loop tuning method of Ziegler and
Nichols (1942) to tune multiloop PID controllers. The
method has not gained wide acceptance because of its
complexity and some reports of poor performance (Waller,
1984). Luyben (1986) proposed the biggest log modulus
tuning (BLT) method for multiloop PI controllers. The
method first tunes each individual PI controller follow-
ing the single-loop Ziegler-Nichols rules and then
detunes the entire system by a single factor to meet a
specific stability requirement. The method of Basualdo
and Marchetti (1990) is a modification of the BLT

method. First, the individual controllers are designed
independently based on the internal model control
(IMC) structure (Garcia and Morari, 1982). Then, a
single parameter is employed to adjust the multiloop
system until robust stability and performance conditions
are satisfied. The latter two methods have the disad-
vantage of requiring excessive modeling effort to seek
a complete transfer function matrix.
The idea of sequential design was used for multiloop

control systems in recent years (O’Reilly and Leithead,
1991; Chiu and Arkun, 1992; Loh et al., 1993; Shen and
Yu, 1994). According to specific sequential algorithms,
the multivariable design problem is decomposed into a
sequence of SISO design problems. Consequently,
multiple single-loop designs can be employed by taking
account of interactions in a sequential fashion. In this
way, Loh et al. (1993) and Shen and Yu (1994) applied
the single-loop relay technique of A° ström and Hägglund
(1984) to design multiloop PI controllers. However, the
conventional relay technique based on the describing
function stipulates that the output response resemble
a sinusoidal wave, which is often not the case in the
identification of multiloop systems in a sequential
fashion.
There are also techniques for the design of true

multivariable controllers that utilize all available pro-
cess outputs jointly to make decisions on all inputs. With
such controllers, it is possible to eliminate the effect of
interactions between the process variables. Such tech-
niques as the optimal control (LQ), the dynamic matrix
control (DMC; Cutler and Ramaker, 1980), and the
internal model control (IMC; Garcia and Morari, 1982)
methods require the full knowledge of the process and
the resultant controllers are often quite complex. Other
approaches, such as Rosenbrock’s inverse Nyquist array
(INA) method, make use of interaction compensators
(decouplers) to eliminate the interactions between the
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loops. The design algorithms are computationally in-
volved and therefore less appealing to practicing engi-
neers.
The objective of this work is to provide process

engineers with an easy-to-use method to design multi-
variable decoupling and multiloop PI/PID controllers
with very little prior knowledge about multivariable
plants. The unknown multivariable plant is assumed
square and open-loop stable. The design method must
achieve good performance, robust stability, and integrity
with minimal engineering effort.
Underlying algorithms are first presented to tune

multiple PI/PID control loops in a multivariable plant.
A single-loop tuning technique, composed of biased relay
identification schemes and tuning formulae, is applied
to each loop in the predetermined sequence of loop
closing. The tuning technique is versatile for a wide
range of process dynamics prevailing in a multivariable
environment. Unlike the conventional relay technique,
the proposed identification schemes require only the
existence of sustained oscillations and always lead to
exact estimates of the frequency responses at zero and
relay frequencies.
If the multivariable system experiences severe inter-

actions, a method is proposed to design decouplers to
compensate for the effect of interactions. Otherwise,
multiloop PI/PID controllers, which do not incorporate
decouplers, could be employed. The decouplers are
constructed based on approximate models obtained from
proposed biased relay tests. Tuning of the resultant
weakly interacting, single-loop PI/PID controllers is
then achieved in the predetermined sequence of loop
closing. The decouplers, together with single-loop con-
trollers, constitute the multivariable decoupling control-
ler.
The proposed design method only assumes that pair-

ing of the manipulated and controlled variables has been
made using measures such as the Niederlinski index
(Niederlinski, 1971; Grosdidier, et al., 1985) so that the
system is PI/PID stabilizable. Simulation results are
shown for one 2 × 2 and one 3 × 3 multivariable
systems from the literature. The proposed design
method compares favorably with the Niederlinski, BLT,
and empirical methods.

2. Sequential Tuning of Multiple Control Loops

A multivariable decoupling controller consists of n
single-loop PID controllers together with n! decouplers.
The n × n process GP(s) is represented as follows:

The centralized control structure is better illustrated
with a 2 × 2 system in Figure 1. Additional transfer
function blocks (decouplers) can be introduced between
the single-loop controllers and the process. The main
objective in decoupling is to compensate for the effect
of loop interactions brought about by cross-couplings of
the process variables. The design of decouplers will be
elaborated in a later section. If the decouplers are
absent, the control structure shown in Figure 1 reduces
to a multiloop control system.
The variables ri(s), ui(s), vi(s), and yi(s) represent,

respectively, the reference (setpoint), input, manipu-
lated, and output (controlled) variables of loop i. As
depicted in Figure 1, the PID controller of loop i is in

the form of series connection, which consists of the
following:

This series connection of the proportional-integral action
and the derivative action is utilized to avoid a derivative
kick for an abrupt change in the reference input. The
term (1 + RτDis) is added to render the controller
physically realizable. The value of R is typically be-
tween 0.05 and 0.2.
Even if the decouplers are incorporated, interactions

between the process variables cannot be completely
eliminated because of model mismatch. As a result, the
multiple control loops for a multivariable process even
with decouplers can not, in general, be tuned indepen-
dently. Here, a sequential tuning strategy that takes
interactions into consideration is proposed. The under-
lying idea is to treat multiple control loops with or
without decouplers as a sequence of single loops. For
example, the two control loops in the 2 × 2 system can
be tuned in a sequential way of loop closing as depicted
in Figure 2. Loop 1 is first tuned with loop 2 open (see
Figure 2a) by performing a closed-loop identification test
on loop 1 to determine the corresponding controller
settings. Loop 1 is then placed in automatic with the
resultant settings and an identification test is performed
on loop 2 (see Figure 2b). With loop 2 closed, an
identification test may be performed again on loop 1 to
provide a new set of controller settings (see Figure 2c).
This sequential tuning procedure can be continued
between Figures 2b and 2c until the convergence of all
controller parameters is achieved. Note that for each
tuning stage, the system will behave like a single loop.
The double-loop results can be extended readily to the
case of n coupled control loops to be tuned sequentially.
It is then clear that multiple control loops can be

tuned sequentially in an iterative manner using any
single-loop tuning technique. Two questions that arise
are: In what sequence should multiple control loops be
tuned?; and Why is one sequence advantageous over
another? These questions must be answered by exam-
ining the mutual effect between the loops via interac-

GP(s) ) [gij(s)] i, j ) 1, 2, ..., n (1)

Figure 1. Double-loop decoupling PID control system.

Ki(s) ) kCi(1 + 1
τIis) (2a)

Di )
1 + τDis
1 + RτDis

(2b)
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tions. It has been reported several times that in a
multiloop control system, a faster loop is less affected
via interactions with a slower loop but not vice versa
(McAvoy, 1983; Isermann, 1991; Hwang, 1995a). Loh
et al. (1993) and Hwang (1995a) further indicated that
the speed of a control loop can be estimated roughly by
the ultimate frequency of the freely standing loop (i.e.,
the diagonal element of the process transfer matrix
alone). The ultimate frequency is referred to as the
frequency of sustained oscillations resulting from a
purely proportional control loop. Such considerations
result in the rule of thumb that the tuning sequence
should be started with the faster loops with higher
ultimate frequencies. This sequence allows the slower
loops to be tuned later and, hence, enables one to
account for the interactions resulting from the closure
of the faster loops (Loh et al., 1993). A second rule is
that a loop that is significantly faster than some other
loops can be treated as a decoupled loop and tuned
independently regardless of variations of the controller
settings in these slower loops. In this way, the number
of iterative tuning steps can be kept to a minimum.
Based on the aforementioned arguments and exten-

sive simulation study, a clear and efficient sequential
tuning procedure is developed for multiple control loops
as follows:
Multivariable Decoupling Controller. (1) With-

out the incorporation of decouplers, perform prior tests
on each individual loop (freely standing with all other
loops open) to estimate the ultimate frequency. Rank
the loop speeds from fast to slow based on the estimated
ultimate frequencies.

(2) With the decouplers added, the controller design
task is reduced to tuning of several weakly interacting,
single-loop controllers, as depicted in Figure 2. The
tuning strategy is then to tune the loops once in the
fast-to-slow sequence of loop closing. Further iterations
are not required because the loop interactions are weak.
Multiloop Controllers. (1) Perform prior tests on

each individual loop to estimate the ultimate frequency.
Rank the loop speeds from fast to slow based on the
estimated ultimate frequencies.
(2) For a multiloop system, multiple control loops with

rather significant interactions may be encountered. The
tuning strategy is more elaborate. First, decompose the
multiloop system into several subsystems by looking
through the estimated ultimate frequencies. Then, let
all loops in a more rapid subsystem have ultimate
frequencies at least twice those in a slower subsystem.
Loops of comparable speeds are grouped into the same
subsystem (the ratio of any two adjacent ultimate
frequencies is <2). It is assumed that a slower sub-
system has a negligible effect on a faster one via loop
interactions but not vice versa. For example, in a four-
loop system, the ultimate frequencies of the individual
loops are estimated to be 3, 2, 1, and 0.75. The system
can be split into two subsystems, a faster subsystem
consisting of the first two loops and a slower subsystem
consisting of the latter two loops. In this way, a higher
dimensional problem can be decomposed into several
lower dimensional problems if some of the ultimate
frequencies of the individual loops are distinct and far
apart.
(3) Tune the subsystems in the fast-to-slow sequence

of loop closing. The fastest subsystem is first tuned with
all slower subsystems open. It is then placed in
automatic and the second fast subsystem is tuned with
the rest of the subsystems open. This sequence is
continued until the slowest subsystem is tuned. Note
that because the closure of the slower subsystem has a
negligible effect on the faster subsystem via interac-
tions, there is no need to retune the faster subsystem
after the slower subsystem is closed. In other words,
each subsystem is tuned independently in the fast-to-
slow sequence.
(4) When a subsystem consisting of more than one

loop is to be tuned, the loops should also be tuned in
the fast-to-slow sequence of loop closing. However,
these loops are now of comparable speeds, implying that
they are coupled with one another to a certain extent.
Therefore, the tuning sequence should be repeated in
an iterative manner to account for the effect of loop
interactions. For example, a two-loop subsystem (loop
1 is faster than loop 2) should be tuned in the repeated
sequence of 1-2-1-2, as illustrated in Figure 2.
Extensive simulation study reveals that further itera-
tions do not necessarily improve the performance.

3. Single-Loop Tuning Technique for
Multivariable Systems

By virtue of the sequential tuning algorithms, the
design of a multivariable control system reduces to
multiple single-loop designs. In principle, any single-
loop PID tuning method can be applied. However,
during the sequential tuning procedure, the combined
dynamics of a single loop could exhibit widely different
characteristics from those of the freely standing loops
(at least higher order than the original). Such difference

Figure 2. Sequential tuning procedure illustrated with a double-
loop control system.
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is caused by the closure of a subset of loops and/or the
incorporation of decouplers. The combined dynamics
could be oscillatory, nonminimum phase, or high order
even if the dynamics of all elements in the transfer
matrix are overdamped, minimum phase, and low order.
In other words, a practical single-loop tuning method,
if applicable to multivariable systems, must be able to
cope with a very wide variety of dynamics. The well-
known Ziegler-Nichols PID tuning formulae, even
modified, are not suitable.
Here, a single-loop tuning technique is developed to

tune multiple PID control loops sequentially. The
technique is a combination of relay-based identification
schemes and PI/PID tuning formulas. For identification
purposes, the conventional relay feedback scheme of
A° ström and Hägglund (1984) has the merits that a
priori information about the time scale or the structure
of the process is not needed and that a rapid excitation
signal is generated automatically. In this work, the
conventional relay scheme is adapted to suit the iden-
tification of sophisticated multivariable dynamics.
3.1. Biased Relay Identification Scheme. The

SISO process is excited by connecting a relay in a
feedback path from the process output to the input, as
depicted in Figure 3a. The relay has an amplitude h.
A bias B(s) () 0.5h/s) is added at the process input to
change the relay characteristics, producing a nonzero-
mean square signal. The process input and output
signals would become limit cycles at equilibrium. Be-
cause of the bias added, the limit cycles, u(t) and y(t),
are asymmetrical in the relay switching intervals, as
shown in Figure 3b. These limit cycles in the process
input and output can be used to obtain a model for
subsequent controller tuning.
3.2. Cascade Relay Identification Scheme. Bi-

ased relay identification can also be performed on the
process under closed-loop control provided that stabiliz-
ing controller settings are available (Schei, 1992; Hwang,
1995b). This identification would lead to a process
model that describes better the dynamics under normal
operating conditions. As shown in Figure 4a, the PID
control system is excited by connecting a relay in a
feedback path from the process output to the controller

reference. With a step change of magnitude h applied
before and after the relay, the reference signal r(t) will
vary in a square form between 0 and 2, as illustrated
in Figures 4a and 4b, where the amplitude of the relay
function is also h. Typical process input and output
limit cycles, u(t) and y(t), are also plotted in Figure 4b.
3.3. Derivation of Process Model from a Single

Biased Relay Test. The conventional relay feedback
test without bias can only yield the estimates of the
ultimate gain and frequency, which are not sufficient
to obtain an appropriate process model. Hence, the
Ziegler-Nichols rules must be used for subsequent
controller tuning. On the other hand, the proposed
biased relay schemes in conjunction with the estimation
algorithm discussed next can be used to estimate
accurately the steady-state gain and one point on the
Nyquist curve, which leads to a process model with
three parameters.
The process transfer function is given as follows:

Signals y(t) and u(t) in both identification structures will
oscillate perpetually (limit cycles) with the same fre-
quency ωo, the relay frequency, after the transients die
out. Replacing s by jωo and applying the definition of
Laplace transform in eq 3 yields eq 4:

Because of the periodicity of the signals, the evaluation
of the integrals in eq 4 can be greatly simplified as
integrating over any number of periods; that is

Figure 3. Biased relay identification scheme.

Figure 4. Cascade relay identification scheme.

g(s) )
Y(s)
U(s)

(3)

g(jωo) )
∫0∞y(t) cos ωot dt - j∫0∞y(t) sin ωot dt

∫0∞u(t) cos ωot dt - j∫0∞u(t) sin ωot dt
(4)

g(jωo) )

∫t0t0+mTy(t) cos ωot dt - j∫t0t0+mTy(t) sin ωot dt

∫t0t0+mTu(t) cos ωot dt - j∫t0t0+mTu(t) sin ωot dt
(5)
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where t0 denotes an arbitrary time after the transients
die out, m is an integer, and T () 2π/ωo) is the period.
The steady-state gain kP is estimated as follows:

Note that the conventional relay technique, generating
zero-mean limit cycles at the process input and output,
is not capable of exploiting this relation because both
of the integrals in eq 6 are zeros.
Equation 5 constitutes the basis of estimating one

point on the Nyquist curve of the process (i.e., the
amplitude ratio and phase angle of the frequency
response at the relay frequency ωo). As is well known
from the Fourier series analysis for periodic signals, ωo

is essentially the frequency of the fundamental har-
monic. The integrals in eq 5 can eliminate the compo-
nents of means and higher harmonics in y and u.
Equation 5 thus leads to the exact estimate of one point
on the Nyquist curve of the process. This ability is a
distinct advantage of the proposed relay schemes over
the conventional one, which simply ignores the effect
of higher harmonics.
The proposed schemes in conjunction with eqs 5 and

6 require only the existence of sustained oscillations
regardless of the shape of limit cycles. On the contrary,
the technique based on the describing function stipu-
lates that the output response resemble a sinusoidal
wave. Furthermore, the proposed schemes applying a
bias at the relay output easily yield the estimates of the
steady-state gain as well as one Nyquist point from a
single test. These features are particularly suited for
identification task of multivariable systems in a sequen-
tial fashion. Another advantage of the proposed relay
schemes is their insensitivity towards measurement
noise and static disturbances. The algorithm (eq 5) can
eliminate essentially any static upsets arising in the
process input or output, except that the oscillation
frequency might be slightly altered. The effects of
measurement noise during identification are attenuated
by the feature of integrating over cycles.
For identification purposes, a first-order-plus-time-

delay model is employed:

A wide range of d/τ is assumed to account for a wide
variety of process dynamics. The model can simulate
high-order, delayed, slightly oscillatory, and small non-
minimum phase dynamics. The estimates of the steady-
state gain and one Nyquist point obtained from a single
relay test directly yield the three model parameters.
3.4. PID Controller Settings for First-Order-

Plus-Time-Delay Processes. To account for the com-
plexity of the combined dynamics in a multivariable
system, a wide range of d/τ (0.01 e d/τ e 10) is
considered in deriving PI/PID parameters. The ideal

PID controller is given in one of the following forms:

The relation between the parameters of series connec-
tion, kC, τI, and τD, and those of parallel connection, k′C,
τ′I, and τ′D, is

Although PID parameters of series connection are
sought in the present work, the structure of parallel
connection is assumed in the derivation of PID param-
eters for convenience. Equation 8 is used to convert PID
parameters of parallel connection to those of series
connection defined in eq 2. The optimization of PI and
PID control is primarily based on the performance
index, the weighted integral of the square error (WISE),
proposed by Nishikawa et al. (1984). We intend to
minimize the WISE of the closed-loop response subject
to a step change in setpoint:

where ∆y(t) ) r(t) - y(t) is the error of the process output
and the positive number â is to adjust the damping of
the response. The optimal controller settings that
minimize the index (eq 9), with â chosen appropriately,
yield fast damping and small overshoot characteristics.
The parameter â is set by

where Pu is the ultimate period of the process. The
value of γ is chosen so that the integral of the absolute
error (IAE) of the response is minimal. For PID control,
the ratio of τ′D to τ′I is specified to simplify the search
procedure without sacrificing the of control system
performance.
The optimal PI and PID parameters that minimize

WISE with appropriate γ are searched after by an
optimization routine for a wide range of d/τ (i.e., 0.25 e
d/τ e 10). For very small d/τ (e.g., d/τ < 0.25), simula-
tion results show that the WISE method tends to yield
aggressive controller settings, producing large overshoot
and poor robustness. For this range of d/τ, we choose
to use the IMC-PID design proposed by Rivera et al.
(1986), which leads directly to a PI or PID controller.
However, because of the substitution of a Padé ap-
proximation for the delay term, the IMC-PID

kP ) g(0) )
∫t0t0+mTy(t) dt
∫t0t0+mTu(t) dt

(6)

g(s) )
kPe

-ds

τs + 1

gC(s) ) k′C(1 + 1
τ′Is

+ τ′Ds)
) kC(1 + 1

τIs)(1 + τDs) (7)

kC ) k′C(1 + x1 - 4τ′D/τ′I)/2

τI ) τ′I(1 + x1 - 4τ′D/τ′I)/2

τD ) τ′I(1 - x1 - 4τ′D/τ′I)/2 (8)

WISE(â) ) ∫0∞[∆y(t)eât]2 dt (9)

â ) γ
Pu

(10)
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design is inferior to the WISE method for large d/τ. The
resultant tuning formulas are

Note that the aforementioned functions are the combi-
nation of the WISE method for d/τ g 0.25 and IMC
method for d/τ < 0.25. It is important that the functions
are continuous at the point of d/τ ) 0.25 so that
iterations over loops using the formulae can proceed in
the neighborhood of this point. To meet this require-
ment, the filter time constant τC in the IMC design is
calculated to be 0.005τ + 0.53d for PI control and 0.005τ
+ 0.7d for PID control, whereas the ratio of τ′D and τ′I
derived from the IMC design is also used in the WISE
method.
To demonstrate the validity of the aforementioned

tuning formulae, eq 11 is compared with the IMC-PI
method and the Ziegler-Nichols PI method in view of
performance, overshoot, and robustness for first-order-
plus-time-delay processes in Figure 5. The filter time
constant of the IMC-PI rules is selected to be 0.7d so
that the resultant control system yields the minimum
IAE for a step setpoint change. It appears that for a
wide range of d/τ, the proposed formulae yield satisfac-
tory IAE for setpoint and load changes. They also
provide robust stability and small overshoot. Robust
stability is measured via the index proposed by Doyle
and Stein (1981); that is, the lower bound of the singular
value of 1 + (g gC)-1 for all frequencies. On the other
hand, the Ziegler-Nichols and IMC methods are valid
only for a relatively narrow range of d/τ. For example,
both methods lead to poor performance for large d/τ, as
seen in Figures 5a and 5b. The Ziegler-Nichols method
produces excessively large overshoot and provides poor
robust stability for small d/τ, as shown in Figure 5c.

4. The Design of Decouplers

In multiloop design, the underlying theme is not to
eliminate interactions entering the loops but to take
them into account loop by loop in a sequential fashion.
In other words, an optimally tuned multiloop control

systemmay still experience severe loop interactions and
respond poorly. On the other hand, the objective in
decoupling is to compensate for the effect of loop
interactions brought about by cross-couplings of the
process variables.
The decoupler design problem is to eliminate interac-

tions from all loops. We start with the decoupler design
for a 2 × 2 system shown in Figure 1, where the process
model is

Because of decouplers, the equations governing the
control action become

PI control (0.01 e d/τ e 10)

kCkP )

{τ/(0.005τ + 1.53d) for d/τ < 0.25
0.292 + 0.482(τ/d) + 0.023(τ/d)2 for d/τ g 0.25

(11a)

τI/τ ) {1 for d/τ < 0.25
0.955 + 0.386(d/τ) for d/τ g 0.25 (11b)

PID control (0.01 e d/τ e 10)

k′CkP )

{(τ + 0.5d)/(0.005τ + 1.2d) for d/τ < 0.25
0.374 + 0.724(τ/d) + 0.025(τ/d)2 for d/τ g 0.25

(12a)

τ′I/τ ) {1 + 0.5(d/τ) for d/τ < 0.25
0.966 + 0.482(d/τ) for d/τ g 0.25

(12b)

τ′D/τ ) {d/(2τ + d) for d/τ < 0.25
[0.5d/(τ + 0.5d)2]τ′I for d/τ g 0.25

(12c)

Figure 5. Comparison of the proposed PI tuning rules with the
Ziegler-Nichols PI and IMC-PI rules via (a) IAE values for step
setpoint changes, (b) IAE values for step load changes, and (c)
overshoot and robustness index.

y1 ) g11ν1 + g12ν2 (13a)

y2 ) g21ν1 + g22ν2 (13b)

ν1 ) u1 + I12u2 (14a)

ν2 ) u2 + I21u1 (14b)
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Substituting these equations into eq 13 gives

Now in order to have u1 affect only y1 and u2 affect only
y2, we choose the decouplers as follows:

Now, the two loops appear to act independently and can
therefore be tuned individually in isolation from the
other.
Perfect decoupling is only possible if the exact process

model is available. As this is hardly ever the case,
perfect decoupling is unattainable in practice. Never-
theless, imperfect decouplers, based on the identified
approximate models, can be implemented easily as
follows. Prior to the incorporation of decouplers, the
proposed biased relay scheme is applied to each indi-
vidual loop with the other loop open. Each element gij
is identified as a first-order-plus-time-delay transfer
function:

Note that each identification test yields not only a
diagonal element but also an off-diagonal element. For
example, for the identification on loop 1 with loop 2
open, the diagonal element g11 is obtained from the
excited u1-y1 limit cycles; simultaneously, the off-
diagonal element g21 is estimated from the excited u1-
y2 limit cycles. Hence, for an n × n system, merely n
such tests are required to construct decouplers. The
decouplers then become

The decouplers must be stable and causal. Stability is
ensured because the identification schemes lead to a
stable transfer function without RHP zeros. To ensure
causality, it is necessary that the smallest time delay
occurs on the diagonal (i.e., d11 < d12 and d22 < d21). If
this is not the case, an approximation of the predictor
based on the Taylor series expansion is used:

For a 3 × 3 system, there are six decouplers to be
implemented. The resultant relationship between the

process outputs yi and the outputs of the single-loop
controllers ui becomes

Complete decoupling requires that the six off-diagonal
elements of the matrix in eq 20 be set to zeros. Every
two decouplers are obtained by solving two simulta-
neous equations in the same column. For example, the
decouplers for loop 1 are obtained as

With three biased relay tests performed on the indi-
vidual loops, each element gij is identified as a first-
order-plus-time-delay transfer function. For the ease
of implementation, each combined term in the paren-
theses of eq 21 is further simplified to a first-order-plus-
time-delay model by letting their steady-state gains and
frequency responses at a properly chosen frequency be
identical; that is

This frequency for fitting can be selected as the slowest
of the three relay frequencies in the biased relay tests,
implying that the control system is decoupled at least
for the dominant frequency of the slowest loop. It
should be mentioned that although the decouplers are
sometimes constructed at the smallest frequency, the
entire system is not designed only for that frequency.
In a sequential fashion, the single-loop controllers are
tuned to reflect the speed of each loop. Substituting the
models in eq 22 into eq 21 leads to the simplified
decouplers for loop l:

If any delay term in eq 23 is not causal, the approxima-

(y1y2 ) ) (g11 + g12I21 g11I12 + g12
g21 + g22I21 g21I12 + g22 )(u1u2 ) (15)

I12 ) -
g12
g11

(16a)

I21 ) -
g21
g22

(16b)

gij(s) )
kije

-dijs

τijs + 1
(17)

I12(s) ) -
k12(τ11s + 1)

k11(τ12s + 1)
e-(d12-d11)s (18a)

I21(s) ) -
k21(τ22s + 1)

k22(τ21s + 1)
e-(d21-d22)s (18b)

e+Ls ≈ Ls + 1
0.2Ls + 1

(19)

(y1y2y3 ) )

(g11 + g12I21 + g11I12 + g12 + g11I13 + g12I23 +
g13I31 g13I32 g13

g21 + g22I21 + g21I12 + g22 + g21I13 + g22I23 +
g23I31 g23I32 g23

g31 + g32I21 + g31I12 + g32 + g31I13 + g32I23 +
g33I31 g33I32 g33

)(u1u2u3 )
(20)

I1m )
gnmg1n - g1mgnn
g11gnn - g1ngn1

)
gnmg1n

gnn(g11 - g1ngn1/gnn)
-

g1mgnn
g11(gnn - g1ngn1/g11)

m * n; m, n ) 2, 3 (21)

g11 -
g1mgm1
gmm

≈ k′1me
-d′1ms

τ′1ms + 1

gmm -
g1mgm1
g11

≈ k′mme
-d′mms

τ′mms + 1
m ) 2, 3 (22)

Ilm )
knmkln(τnns + 1)(τ′lns + 1)

knnk′ln(τnms + 1)(τlns + 1)
e-(dnm+dln-dnn-d′ln)s -

klmknn(τlls + 1)(τ′nns + 1)

kllk′nn(τlms + 1)(τnns + 1)
e-(dlm+dnn-dll-d′nn)s

l * m * n; l, m, n ) 1, 2, 3 (23)
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tion (eq 19) could be used. Such decoupler design can
be easily extended to n × n systems.
For 3 × 3 or higher dimensional systems, one may

consider partial decoupling when some of the loop
interactions are weak or if some of the loops need not
have high performance. Therefore, attention is focused
on a subset of decouplers such that only a portion of
the six off-diagonal elements of the matrix in eq 20 are
set to zeros.

5. Multivariable Cases Studied

The proposed sequential design method for multivari-
able decoupling and multiloop PI/PID controllers are
applied to one 2 × 2 and one 3 × 3 system from the
literature.
Example 1 (Niederlinski, 1971).

For this example, two possible pairing configurations,
reflected by the transfer function matrices GP1 and GP2,
are considered. Both pairings are integral stabilizable.
For the first pairing, decouplers could be added to
improve performance by diminishing loop interactions.
The sequential design procedure for a multivariable

decoupling PID controller is shown in Figure 6a and
delineated as follows:
Step 1. Without the incorporation of decouplers,

perform a biased relay test on loop 1 with loop 2 open.
The input u1 and the outputs y1 and y2 are recorded and
the first-order-plus-time-delay models for g11 and g21 are
derived based on eqs 5 and 6. The ultimate frequency
of loop 1 is estimated to be 10.9 based on the model.
Step 2. Perform a biased relay test on loop 2 with

loop 1 open. The input u2 and the outputs y1 and y2.
The ultimate frequency of loop 2 is estimated to be 10.9.
The decouplers are then designed using eq 18 as follows:

Install them in place. Because the two loops have the
same ultimate frequencies, the tuning sequence can be
1-2 or 2-1. Select arbitrarily the tuning sequence as
1-2.
Step 3. Loop 1 is tuned using a biased relay with loop

2 open.
Step 4. Loop 2 is then tuned using a biased relay with

loop 1 closed with the PID settings obtained in step 3.
The sequential tuning procedure for multiloop PID

controllers is shown in Figure 6b and delineated as
follows:
Steps 1 and 2. Perform a biased relay test on each

individual loop with the other loop open as for the
multivariable decoupling controller. The tuning se-
quence can be 1-2-1-2 or 2-1-2-1. Select arbitrarily
the sequence of 1-2-1-2.
Step 3. Loop 2 is then tuned using a biased relay with

loop 1 closed with the PID settings obtained in step 1.

Figure 6. Tuning procedures including prior tests for example 1
with the first pairing: (a) multivariable decoupling PID design;
(b) multiloop PID design.

GP1(s) )

[ 1
(0.1s + 1)(0.2s + 1)2

-2.4
(0.1s + 1)(0.2s + 1)2(0.5s + 1)

0.5
(0.1s + 1)2(0.2s + 1)2

1
(0.1s + 1)(0.2s + 1)2

]
GP2(s) )

[ 0.5
(0.1s + 1)2(0.2s + 1)2

-1
(0.1s + 1)(0.2s + 1)2

1
(0.1s + 1)(0.2s + 1)2

2.4
(0.1s + 1)(0.2s + 1)2(0.5s + 1)

]

Figure 7. Tuning procedures including prior tests for example 1
with the second pairing: (a) multivariable decoupling PID design;
(b) multiloop PID design.

I12 )
2.4(0.7s + 1)e-0.122s

3.73s + 1

I21 ) -
0.5(0.7s + 1)e-0.0735s

1.01s + 1
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Step 4. Loop 1 is retuned using the cascade relay
scheme with loop 2 closed. The PID parameters used
for loop 2 are obtained in step 3 and the PID controller
placed in loop 1 remains unchanged for identification.
Step 5. Loop 2 is retuned using the cascade relay

scheme with loop 1 closed.
Note that the multiloop system is characterized by

two comparable ultimate frequencies (both are 10.9);
some iterations are required to achieve better design.
For the second pairing, the sequential design proce-

dure for a multivariable decoupling PID controller is
shown in Figure 7a. The ultimate frequencies of loops
1 and 2 are estimated to be 7.07 and 4.74, respectively.
The decouplers are designed using eqs 18 and 19 as
follows:

Note that the original decouplers based on eq 18 cannot
be built and, hence, eq 19 is employed to yield the
approximate decouplers. With the decouplers installed,
the system is tuned in the sequence of 1-2. The
sequential tuning procedure for multiloop PID control-
lers are shown in Figure 7b. The tuning sequence is
1-2-1-2.
Example 2 (Tyreus, 1982).

For the Tyreus distillation column, the ultimate
frequencies of loops 1-3 are estimated to be 2.22, 1.06,
and 1.04, respectively. The decouplers for complete
decoupling are designed as follows:

The decouplers for partial decoupling are designed as
follows:

The frequency for fitting is selected as the smallest relay
frequency of the three prior relay tests (i.e., 0.847).
With the incorporation of the desired decouplers, the
three single-loop PI controllers are tuned in the se-
quence of 1-2-3.
Based on the ultimate frequencies, the multiloop PI/

PID system is decomposed into a faster subsystem
consisting of loop 1 and a slower subsystem consisting
of loops 2 and 3. The tuning sequence is 1-2-3-2-3,
as depicted in Figure 8.
For example 2, the control system is paired on the

diagonal elements of the transfer function matrix as
reported by the original author. Nevertheless, the
proposed algorithms are not limited to a particular
pairing configuration insofar as the multiloop system
is integral stabilizable (Grosdidier et al., 1985).

6. Results and Discussion

The proposed sequential design method employs prior
relay tests to determine the tuning sequence such that
the number of iterative steps can be kept to a minimum.
For the two examples, the performance of the final
controller designs are evaluated via the IAE values of
all loops for a unit step change in each setpoint. The
PI/PID controller parameters in each tuning step are
determined from eqs 11 and 12. The robust stability of
the closed-loop system is measured by the minimum
singular value of I + (GGC)-1 for all frequencies in the
face of unstructured uncertainties.
The PI/PID settings of multivariable decoupling con-

trollers and multiloop controllers, the IAE values of each
loop, and the indices for robust stability resulting from
the sequential designs and other methods are shown in
Tables 1-3. For example 1, the proposed method is
compared with the Niederlinski method, and for ex-
ample 2, it is compared with the empirical method
(settings reported by the original authors using trial-

I12 )
2(0.587s + 1)(0.0676s + 1)

(0.379s + 1)(0.2 × 0.0676s + 1)

I21 ) -
0.417(1.06s + 1)(0.197s + 1)
(0.48s + 1)(0.2 × 0.197s + 1)

GP(s) )

[1.986e-0.71s

66.7s + 1
-5.24e-60s

400s + 1
-5.984e-2.24s

14.29s + 1
-0.0204e-0.59s

(7.14s + 1)2
0.33e-0.68s

(2.38s + 1)2
-2.38e-0.42s

(1.43s + 1)2

-0.374e-7.75s

22.22s + 1
11.3e-3.79s

(21.74s + 1)2
9.811e-1.59s

11.36s + 1
]

I21 )
0.0068(6.41s + 1)(156s + 1)(0.487s + 1)
(86.4s + 1)(11.2s + 1)(0.2 × 0.487s + 1)

+

0.0314(11.2s + 1)(90.5s + 1)e-5.47s

(23.2s + 1)(2.61s + 1)

I31 )
0.0044(11.2s + 1)(90.5s + 1)e-5.95s

(6.41s + 1)(23.2s + 1)
-

0.0078(6.41s + 1)(156s + 1)e-3.24s

(86.4s + 1)(474s + 1)

I12 )
3.02(66.9s + 1)(13.4s + 1)e-59.5s

(404s + 1)(11.2s + 1)
-

3.86(11.2s + 1)(80.1s + 1)e-5.35s

(474s + 1)(14.1s + 1)

I32 )
0.122(66.9s + 1)(13.4s + 1)e-65.7s

(23.2s + 1)(404s + 1)
-

1.31(11.2s + 1)(80.1s + 1)e-3.82s

(66.9s + 1)(474s + 1)

I13 )
3.54(66.9s + 1)(5.33s + 1)e-1.49s

(14.1s + 1)(6.41s + 1)
+

22.5(6.41s + 1)(56s + 1)e-58.9s

(2.61s + 1)(404s + 1)

I23 )
8.49(6.41s + 1)(56s + 1)(0.483s + 1)

(66.9s + 1)(2.61s + 1)(0.2 × 0.483s + 1)
+

0.22(66.9s + 1)(5.33s + 1)e-1.29s

(86.4s + 1)(14.1s + 1)

I12 )
3.02(66.9s + 1)(13.4s + 1)e-59.5s

(404s + 1)(11.2s + 1)
-

3.86(11.2s + 1)(80.1s + 1)e-5.35s

(474s + 1)(14.1s + 1)

I32 )
0.122(66.9s + 1)(13.4s + 1)e-65.7s

(23.2s + 1)(404s + 1)
-

1.31(11.2s + 1)(80.1s + 1)e-3.82s

(66.9s + 1)(474s + 1)

I13 )
2.96(66.9s + 1)e-1.53s

14.1s + 1
I23 ) I21 ) I31 ) 0
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and-error procedures) and the BLT method. On the
basis of performance, robust stability, and integrity, the
sequential design method is far superior to the other
methods, as will be demonstrated later.
The proposed method is applied to design multivari-

able PID decoupling controllers and multiloop PID
controllers for both pairings of example 1. The PID
controllers are in the form of series connection with R
) 0.05. It is compared with the multiloop PID control-
lers of Niederlinski (1971) in Tables 1 and 2. Figures 9
and 10 compare the setpoint responses produced by the
multivariable PID decoupling designs and Niederlinski’s
designs. It appears that the multivariable decoupling
designs are significantly better in performance and
robustness for both pairings. Note that the interaction
in one loop due to a step setpoint change in the other
loop is indeed diminished by the decouplers. The
present multiloop PID designs are slightly worse in
performance but better in robustness than the multiloop
PID designs of Niederlinski. The lack of robustness for
Niederlinski’s designs is evident in Figure 11, where the
setpoint responses produced by Niederlinski’s designs
become quite oscillatory when R is changed from 0.05
to 0.2, although the present multiloop PID designs still
work well.
For the Tyreus column of example 2, the proposed

multivariable PI decoupling designs and multiloop PI/
PID designs are compared with the multiloop PI designs
from the empirical and BLT methods in Table 3.

Apparently, the sequential design method is far superior
to the other two in view of performance and robustness.
The resulting multivariable PI controller with partial
decoupling is undoubtedly the best design. Responses
of the closed-loop systems designed by various methods
subject to a step setpoint change in loop 2 are shown in
Figure 12. Note that the empirical and BLT methods
produce rather oscillatory responses, implying poor
robustness (the indices for robust stability are merely
0.0681 and 0.0653). Note also that the closed-loop
responses of the Tyreus column exhibit multifrequency
property, which makes identification of the system

Figure 8. Tuning procedures for multiloop PI design of example
2.

Table 1. Performance and Robustness Results of Various Methods for Example 1 with the First Pairing

multivariable
decoupling PID

proposed
multiloop PID

Niederlinski’s
multiloop PID

loop 1 loop 2 loop 1 loop 2 loop 1 loop 2

PID settings
kC 3.22 3.24 6.32 7.05 3.20 3.20
τI 1.49 1.47 2.21 2.52 0.182 0.182
τD 0.0854 0.0845 0.0643 0.0625 0.182 0.182

IAE for unit step change in r1 0.340 0.0239 0.319 0.142 0.288 0.0965
IAE for unit step change in r2 0.252 0.378 0.408 0.315 0.154 0.288
minimum singular value 0.707 0.400 0.318

Table 2. Performance and Robustness Results of Various Methods for Example 1 with the Second Pairing

multivariable
decoupling PID

proposed
multiloop PID

Niederlinski’s
multiloop PID

loop 1 loop 2 loop 1 loop 2 loop 1 loop 2

PID settings
kC 5.84 3.35 2.91 0.345 1.50 0.320
τI 0.503 1.58 0.922 0.670 0.314 0.314
τD 0.0425 0.0409 0.139 0.170 0.314 0.314

IAE for unit step change in r1 0.164 0.0458 0.553 0.932 0.597 0.698
IAE for unit step change in r2 0.0156 0.188 0.144 0.621 0.149 0.641
minimum singular value 0.595 0.242 0.162

Figure 9. Responses of each loop for example 1 with the first
pairing designed using various methods: (a) a step setpoint change
in loop 1; (b) a step setpoint change in loop 2.
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extremely difficult. The proposed relay schemes, how-
ever, can still easily extract useful information for
controller tuning.T
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Figure 10. Responses of each loop for example 1 with the second
pairing designed using various methods: (a) a step setpoint change
in loop 1; (b) a step setpoint change in loop 2.

Figure 11. Comparison of various methods for robustness with
respect to a change in the parameter R from 0.05 to 0.2: (a) first
pairing; (b) second pairing.
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Note that during the tuning phase (iii) shown in
Figure 8, the output limit cycle y3, showing two peaks
in one cycle, does not resemble a sinusoidal wave at all.
Hence, the conventional relay technique would fail for
identification. The proposed biased relay schemes,
however, still yield a suitable model without difficulty.
The issue of integrity is considered with example 2.

A multivariable control system is said to have satisfac-
tory integrity if it remains stable under all combinations
of a stipulated set of failure conditions (Postlethwaite
et al., 1981). The set of primary concern includes sensor
and actuator failures. Clearly, any design techniques
aim at devising feedback controllers for practical sys-
tems must incorporate a stability check for such com-
ponent breakdowns. Figure 13 shows that with the
failure of loop 1 (the loop is unexpectedly open), the
Tyreus column under the empirical design becomes
unstable, indicating its lack of integrity. The proposed
multiloop PI design, on the contrary, produces even
more stable responses.

7. Conclusions

A method is developed to design multivariable decou-
pling and multiloop PI/PID controllers in a sequential
manner. The method is based on a single-loop tuning
technique developed for multivariable systems with
unknown dynamics. The design algorithms lead to good
performance, robust stability, and integrity.
The proposed single-loop tuning technique is com-

posed of biased relay schemes and tuning formulae. A
first-order-plus-time-delay model with a wide range of
d/τ is employed to account for versatile dynamics
encountered in a multivariable environment. The bi-
ased relay schemes, as modification of the conventional
relay method, can quickly yield the appropriate model
and are robust with respect to static disturbances during
the identification phase. Unlike the conventional relay
technique, they require only the existence of sustained
oscillations regardless of the shape of excited limit
cycles. This feature is very suitable for identification
of multivariable systems in a sequential fashion.
Prior biased relay tests on each individual loop with

the other loops open are essential to the sequential
design. With such knowledge to distinguish the loop
speeds by their ultimate frequencies, the most efficient
tuning sequence is developed a priori, which guarantees
the design procedure with minimal engineering effort.
It should be emphasized that even though the most
efficient tuning sequence is given, the sequential design
method is not limited to that sequence. In effect, any
tuning sequence can be employed except that more
iteration steps might be required.
The proposed algorithms do not address the variable

pairing problem. They are in effect not restricted to a
particular pairing configuration. They always lead to
stable design insofar as the multivariable system with
an arbitrary pairing is integral stabilizable.
The underlying theme of this work is to provide plant

operators with easy-to-understand methods for quickly
achieving satisfactory control over unknown multivari-
able systems. Despite their simplicity, the proposed
methods yield multivariable designs far superior to that
resulting from the empirical method based on a time-
consuming trial-and-error procedure. The proposed
methods can surely be valuable for practical applica-
tions.

Figure 12. Responses of each loop for example 2 (Tyreus column)
designed using various methods subject to a step setpoint change
in loop 2.

Figure 13. With loop 1 suddenly open, setpoint responses of loop
3 for Tyreus column designed using various methods.
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Nomenclature

B ) bias transfer function
Di ) controller transfer function of loop i defined in eq 2b
d ) time delay
dij ) time delay of gij
GP ) process transfer matrix
g ) process transfer function
gC ) controller transfer function
gij ) i, j element of GP
h ) magnitude of relay
Iij ) transfer function of decoupler from loop j to loop i
Ki ) controller transfer function of loop i defined in eq 2a
kC ) proportional controller gain of series connection
k′C ) proportional controller gain of parallel connection
kCi ) proportional controller gain of loop i
kij ) steady-state gain of gij
kP ) process steady-state gain
L ) time of prediction
Pu ) ultimate period
ri ) reference variable of loop i
T ) period of limit cycles
t0 ) an arbitrary time after the transients die out
ui ) input variable of loop i
vi ) manipulated variable of loop i
yi ) output variable of loop i
R ) parameter defined in eq 2b
â ) parameter defined in eq 10
γ ) parameter defined in eq 10
τ ) time constant
τC ) filter time constant for IMC-PID design
τD ) derivative time of series connection
τ′D ) derivative time of parallel connection
τDi ) derivative time of series connection for loop i
τI ) integral time of series connection
τ′I ) integral time of parallel connection
τIi ) integral time of series connection for loop i
τij ) time constant of gij
ωo ) relay frequency
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