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Continuous Time Representation Approach to Batch and
Continuous Process Scheduling. 1. MINLP Formulation

L. Mockus and G. V. Reklaitis*
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907

The problem of decision timing in the context of batch and continuous process scheduling is
addressed in this paper. Representation of time in any scheduling model affects the number of
integer variables and the convexity of the model. The usual procedure in batch and continuous
process scheduling is to divide the scheduling interval into equal size intervals so as to achieve
the required accuracy. This construction generates a formulation with a potentially very large
number of binary variables. In this paper, the time events arising in the schedule are modeled
directly, and thus the use of binary variables over periods during which no real changes in system
state occur is avoided. Furthermore, such a representation of time offers the potential for direct
integration of operations scheduling and control which is difficult to achieve in the usual equal
size interval approach. The problem is formulated as a mixed integer nonlinear program
(MINLP). Issues pertaining to the efficient solution of this problem are discussed in Part 2 of

this series.

1. Introduction

A wide range of products in the chemical processing
industry are produced using the batch mode of produc-
tion. This mode of production has long been the accepted
procedure for the manufacture of many types of chemi-
cals (specialty chemicals, pharmaceuticals, polymers,
biochemicals, and foods), particularly those which are
produced in small quantities and for which the produc-
tion processes or the demand pattern are likely to
change. The most important feature of batch processes
is their flexibility in processing multiple products by
accommodating the diverse operating conditions associ-
ated with each product. Therefore, in spite of the
traditional drive toward continuous production, the
batch mode continues to be the only alternative for a
number of sectors of the processing industry. As a result
there has been increasing interest in the development
of procedures for scheduling batch process operations.

One key consideration in any scheduling algorithm
is the representation of time. We consider short term
scheduling problems where campaign type, cyclic sched-
uling techniques are not applicable. The common ap-
proach for such problems is to use the uniform time
discretization model (UDM). The scheduling horizon is
divided into equal size intervals, and any event such
as the start or end of a task is allowed to occur only on
interval boundaries. There is a binary variable associ-
ated with each interval which indicates whether or not
that task is started at the beginning of that interval.
Thus time is considered as a discrete variable which can
attain the values of the beginning of each interval. The
main difficulty with this representation is that in order
to accurately represent a process we may need to create
a model with a very large number of binary variables.
To decrease the number of variables, rounding of event
times and durations is commonly used. The drawback
of rounding is that it is difficult to use such a schedule
for process control without ad hoc adjustments because
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the process control logic requires precise execution
times. Furthermore, rounding up can produce infeasible
or loose schedules while rounding down can produce
infeasible schedule. Another inherent UDM difficulty
arises in representing continuous processes because of
the discrete time representation. A continuous process
may start and end somewhere within an equal size
UDM interval, not on the interval boundaries. These
two limitations are removed by a continuous time
representation.

The operations research literature provides a number
of mathematical programming formulations of the sched-
uling problem based on continuous time representation;
see Greenberg (1968), for example. An overview of
application of this approach to batch process scheduling
is presented in Mockus and Reklaitis (1997). In this
work the nonuniform time discretization model (NUDM)
is proposed to model batch processes. In contrast to the
UDM, the binary variables are created only for the real
events such as the start or end of a task but not for every
artificially created equal size interval. Another key
technical difference is that time is considered as a
continuous variable. The model is formulated as an
MINLP, but exact linearization is used to eliminate
some of the nonlinearities. The result is a large scale
mixed integer bilinear program which is solved as a
series of mixed integer linear programs (MILP). The size
of the reformulated problem is the main difficulty with
the approach. It was shown, however, that in cases
when the uniform discretization interval is small com-
pared to the scheduling horizon length, NUDM performs
significantly better than UDM.

A similar approach to that described above was used
in Schilling et al. (1994) for multipurpose continuous
plant modeling. The time horizon is divided into a
number of slots of variable duration. Limited avail-
ability of materials, sequence dependent changeovers,
and temporary unavailability of processing equipment
are taken into account. The problem is formulated as
an MINLP, and exact linearization is employed, which
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results in a large scale MILP. Thus the same difficulty,
namely a large scale MILP, remains.

The key difference of the present work from Mockus
and Reklaitis (1997) and Schilling et al. (1994) is that
the NUDM formulation is extended to handle both batch
and continuous units, thus, enabling both process types
to be modeled within one framework. Furthermore, the
proposed numerical algorithm does not use exact lin-
earization, thus avoiding the need for the solution of a
series of a large scale MILP’s. In some cases not all
customer demands can be satisfied as specified and thus
have to be satisfied at a later time (soft due dates). The
NUDM is also extended to handle this situation. Se-
quence dependent changeovers are treated differently
to be consistent with material balance and allocation
handling. The mathematical form of the formulation is
radically changed by using a few nonrestrictive assump-
tions. For modeling purposes we continue to employ the
state task network formalism (STN) Kondili et al. (1993).

In section 2, we present a rigorous formulation which
characterizes mathematically the states and tasks in
terms of both integer and continuous variables. The
various constraints and objectives under which batch
and continuous plants operated are expressed in non-
linear form with respect to these variables.

The formulation presented here results in a mixed
integer nonlinear programming (MINLP) problem, in
contrast to the MILP obtainable by the UDM approach.
However, as will be shown in section 3 with the help of
two modest but representative examples, while the size
of the MILP produced by the UDM route for a particular
problem structure is quite sensitive to the specific
problem data, the NUDM formulation is invariant to
specific problem data values. Of course, the specific
point at which the dimensionality burden will over-
whelm the advantage of linearity will depend upon the
specific solution algorithms used for the two formula-
tions. In part 2 of this series we will present an NUDM
solution algorithm which will demonstrate that trade-
off via computational trials.

2. Mathematical Formulation of the Scheduling
Problem

In order to determine optimal schedules of batch and
continuous operations, we adopt a particularly simple
model for each task. We assume that a task receives
material from its feed states in fixed, a priori known
proportions of its batch size (or processing rate in the
continuous case) and that it produces material in its
output states also in fixed, known proportions. Further-
more, the processing times for each batch task of each
product are also assumed to be independent of the batch
size and to be known.

A number of parameters are associated with the tasks
and the states defining the STN and with the available
equipment items. More specifically, they are as follows.

Task i is defined by pjjs, the proportion of input of task
i processed in unit j from state s; Pijs: the proportion of
output of task i processed in unit j to state s; tj,
processing time of task i in unit j; 7", minimum
processing time of task i in continuous unit j; J?, set of
units capable of performing batch task i; and J?, set of
units capable of performing continuous task i. Param-
eters J? and Jf relate the process equipment units to
the STN.

State s is defined by Tj, set of tasks receiving material
from state s; T, set of tasks producing material of
state s; and SI"™, maximum storage capacity dedicated
to state s.

Unit j may be capable of performing one or more
tasks. It is characterized by Ij, set of tasks which can
be performed by unit j; B{'**, maximum capacity of unit
j when used for performing task i; Bj", minimum
capacity of unit j when used for performing task i; ri™,
maximum processing rate of continuous unit j when
used for performing task i; and r{}"", minimum pro-
cessing rate of continuous unit j when used for perform-
ing task i.

The maximum and minimum unit capacities already
take into account any differences in densities between
different materials. The maximum capacity obviously
reflects the useful size of the vessel. Although the
minimum capacity is zero for many common operations,
a nonzero value could, for example, represent the
minimum volume of liquid required to cover the heating
coil in a batch vessel.

The scheduling problem for a batch and continuous
processing system can be stated as follows.

Given: the STN of a batch or continuous process and
all the information associated with it; and a time
horizon of interest.

Determine: the timing of operations for each unit (i.e.,
which task, if any, the unit performs at any time during
the time horizon); the flow of material through the
network.

The goal is to optimize a given objective criterion
involving operating costs, sales revenue, and inventory
costs.

For purposes of the current paper, a number of
assumptions are made.

(1) Each task occurs at most once in a given equip-
ment unit. This is not an unduly restrictive assumption
in the case of batch tasks since one can readily estimate
the number of times a task can be executed and thus
create a corresponding number of identical tasks. It
could be restrictive in some cases of continuous tasks
(i.e., when minimum processing time is zero).

(2) The output from a task to all its output states
occurs at the same time. To model separation processes
where this is not the case, we create a chain of tasks
with processing times equal to the corresponding dif-
ference in output times. States which connect these
tasks are then required to be of the zero wait type.

(3) No preemptive operation is allowed (i.e. no task
can be interrupted, once started).

(4) The material is transfered instantaneously from
states to tasks and from tasks to states.

(5) All data are deterministic and fixed over the time
horizon of interest.

With these assumptions we are now in position to
proceed to the mathematical formulation of the schedul-
ing problem described above.

We base our formulation on a continuous time rep-
resentation in which the time horizon of interest is
divided into number of intervals of unequal duration.
Events of any type—such as the start or end of process-
ing individual batches of individual tasks, changes in
availability of processing equipment and other resources
etc.—are only allowed at the interval boundaries. We
number the intervals from 1 to H, where H is the total
number of events (see Figure 1).



<«——— scheduling horizon ———

4 O
T T

Il
1 2 H-1 H
Figure 1. Time representation.

On the basis of the above time representation, the
following variables are introduced to characterize the
tasks in the STN: t,, time corresponding to interval o
WS = 1 if unit j starts processing task i at the
begmnmg of interval o but 0 otherwise; WFjj, = 1 if unit
j ends processing task i at the beginning of interval o
but 0 otherwise; Wij, = 1 if unit j is processing task i
during interval o but 0 otherwise; Bjj, batch size of task
i which is processed in unit j. Qi the amount of
material produced by task i in continuous unit j at the
end of interval o

In addition to characterizing the tasks, it is also
necessary to characterize the states and equipment
units, through the introduction of the following vari-
ables: S, amount of material stored in state s at the
beginning of interval o; Nj,, number of available units j
at the beginning of interval o

Having identified the variables of the system, we need
to express the system limitations into explicit math-
ematical constraints and the system performance cri-
terion into an explicit objective function.

2.1. Constraints. There are three types of funda-
mental constraints which occur in all batch and con-
tinuous scheduling problems: (1) material balances; (2)
capacity constraints—limitations on the capacities of
units, storage vessels, and processing rates; (3) alloca-
tion constraints—the resolution of conflicts when equip-
ment items are allocated to tasks.

2.1.1. Material Balances. Material balances are
expressed mathematically as follows:

S so 1 2 ZPIJS(BU ijo + Quo) +
€T jed;
2 z WJS (Bij ijo + QIJO) Vs, 0 (1)
ieT, 1€Ji
T'J = ztO(WFijo |jo) VI J € JB (2)
0
min Et (Wio — W5), Vi, j e P 3)

Constraint (1) simply states that the net increase (Sso
— Ss0-1) In the amount of material stored in a state s
at the beginning of interval o is given by the difference
of the amount produced in this state and that used. The
initial amount Sy of material in each state s is assumed
to be known, thus allowing the precise initial condition
of all material inventories (including intermediates and
final products) to be specified. Constraints (2) and (3)
ensure that the time elapsed between the task start and
end is equal to task processing time tj; for batch tasks;
it is greater than the minimum run time r[]“” for
continuous tasks.

It is often necessary (e.g. due to contractual obliga-
tions) to deliver to customers certain agreed quantities
Dg, I =1, ..., Ds of material in product state s at various
times tg. Furthermore, it may be necessary (e.g. due to
limited availability of local storage capacity) to receive
quantities Rs, of raw materials in feed state s at the
beginning of interval o during the schedule rather than
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having all the required feedstock stored locally at the
start of processing.

These complications can readily be incorporated in the
mathematical formulation by modifying the material
balance constraint (1)

S 2W5|0
2 Epus (B Wuo + Quo) + 2 Zpus(B Wuo
ieT, I€di icT, 1<
Qijo): Vs, 0 (4)

Land Y t,W5, =15, s, 1=1, ..., D, (5)
o]

2Wg, =
(o]

where WSIO = lif delivery Dg occurs at the beginning of
interval 0. The second term in constraint (4) accounts
for the delivery of the material from the certain state s
(since this material is removed from the system, a minus
sign must be inserted before this term). The third term
accounts for the feeds (in this case the plus sign is used
to represent the fact that the material is an input to
the system). The constraint (5) forces the specific
delivery Dg to occur only once and the time of the
delivery t, to be equal to tg. The batch and continuous
tasks are treated differently because material input and
output for batch processes occurs only during the start
and end of a particular task while for continuous
processes the transfer of the material occurs continu-
ously.

2.1.2. Capacity Constraints. The amount of mate-
rial that starts undergoing task i in unit j is bounded
by the maximum and minimum capacities of that unit:

B Wi, < By < BmaXZW Vi, jed® (8
0

ijo’

The same is true for processing rates:

manl]O(t0+l o) 5 uo - rmaXWuo(to+1 to)l

Vi, je %, 0 (7)

The amount of material stored in a state s must not at
any time exceed the maximum storage capacity for this
state:

0=<S, =S Vs,o0 (8)

2.1.3. Allocation Constraints. At any time, an idle
item of equipment can only start at most one task. Of
course, if the item does start performing a given task,
then it cannot start any other task until the current one
is finished; i.e., the operation is nonpreemptive. Simi-
larly, the task once started must be completed in the
same equipment unit. All these requirements can be
expressed in terms of the following constraints

Nj, = Y Wi+ Y WE, Vi, 0 (9)
|e|J |e|l
0=Njp=1Vj0 (10)

where Njo = 1. Constraint (9) is similar to (1). This
constraint is a resource balance on the number of
available units. It states that the net increase in the
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available units (Nj, — Njo-1) is the difference between
the number of units which finished (the last term) and
began (the second term) processing. One may imagine
having a pool of available units. When some unit begins
processing it is removed from the pool; when it finishes
processing, it is returned back to the pool. Constraint
(10) requires the number of available units to be
between zero and one at any time, thus enforcing that
an idle item of equipment can only start at most one
task and that the operation is nonpreemtive. It should
be noted that this form of resource balance is similar to
the form introduced by Pantelides (1994).

Furthermore, during the time horizon of interest,
certain items of equipment may become unavailable due
to maintenance or breakdowns. Assume that unit j
becomes unavailable (or “dies”) at times tJ'-?, I1=1,.. D
and becomes available (or is “born”) at times t;. This
feature can be taken into account by modifying the
allocation constraint (9)

Nj, = YW, + D Wi, —

i€lj icl;
D;
ywh 2 o Vi, 0 (11)
1=1

=t Vj,1=1,..,D; (12)

i

Ywi, =1 and YtWp,
(o) (o)
Ywh =1 and Y tWh
o o

where W = 1 if unit j “dies” at the beginning of
interval o and ws ilo = 1 if itis “born” at the beginning of
interval 0. The two last terms in constraint (11) account
for the “death” of the unit (unit is removed from the pool
of the available units) and “birth” of the unit (unit is
entered into the pool of available units). Constraint (12)
states that the unit j may “die” (or become unavailable
for processing due to the breakdown or maintenance)
only at specific times t;. Constraint (13) is similar,
except that it accounts #or the “birth” of the unit j.

2.1.4. Limited Availability of Utilities and Man-
power. In addition to processing equipment, the tasks
in a recipe may require the use of utilities (e.g., steam,
electricity, cooling water etc.), and/or manpower. Fur-
thermore, at any given time, the amount required may
be constant or it may depend on the batch size (process-
ing rate).

We assume that the amount of utility u required by
task i is given by the combination of a constant and a
variable term of the form

=t vi,1=1,..,D; (13)

i

Ayij + BuiBij T BuifQijor YU, T € 1, j € 35,0 (14)

where B;j;j is the relevant batch size, Qjj is the relevant
amount of material produced by a continuous task, and
I, is the set of tasks which require utility u. For
manpower and other discrete utilities (such as auxiliary
equipment), the constant demand factors oyj are nor-
mally integer, while the variable factors f;j are likely
to be zero.

The total demand U, for utility u over interval o is
given by

U, = 2 Zwijo(auij + BuiBij T BuijQijo): YU, 0 (15)

i€l jed;

If the task i is processed on unit j at the time t, then
Wijo is 1 and the utility u consumption is equal to the
sum of constant and variable terms. The maximum
amount of utility U™ at any time cannot be exceeded
by the total demand. This leads to the following simple
bounds:

Uy, < UP™, Vu, 0 16
(16)

uo —

2.1.5. Sequence Dependent Cleaning. It is often
the case in batch plants that certain equipment units
require cleaning or some other preparation between
uses. As with ordinary tasks, we assume that cleaning
operations are of fixed duration, during which they may
place demands on utilities and manpower. In the
sequence-dependent cleaning case, the type and dura-
tion of cleaning required between two tasks depends on
the identity and relative order of these two tasks. For
instance, in a dye manufacturing plant, a unit may
require extensive cleaning if the processing of a dark
dye is to be followed by that of a lighter one. However,
little or no cleaning may be required in the reverse
situation.

We create a cleaning task jk - with processing time
Tjw i to denote the cleaning of unit j required between
tasks k and k’. For instance, in the dye example
mentioned above, we could have a “dark” and a “light”
tasks, with, say, 7j,; = 2h and 7j,,; = 0. The utility
demand factors aw,j and By, can then be set to values
reflecting the actual requirements of the cleaning
operation.

To model this situation we introduce the following
variables: NJCO, number of units j ready to execute task
k at the beginning of interval o (“clean” units); Nio,
number of units j which finished processing task k at
the beginning of interval o (“dirty” units); Wik'l'o =1if
cleaning operation between tasks k and k’ is started

but 0 otherwise; WJ go = 1 if cleaning operation be-

tween tasks k and k ” is finished but O otherwise.
Then we can express cleaning constraints in the
following way:

NFo = NJ oy — ijo+ 2 W) o Viikel, o (17)

iko Jied0?
NP = NP oy + Wi, — 2 W o Vi kel 0 (18)
k "k =k
= Y (N7, + NPy, Vj, 0 (19)

kelj

JkkJ Zt( o j ]o) VJ k=k’ Gl (20)

where NFj o = 0. Constraint (17) states that the increase
in the number of “clean” units ready to process a task (
N7, — Ni°,_4) is given by the difference in the number
og the “cleaned” units (the last term) and the number
of the units which began processing (the second term)
The increase in the number of “dirty” units (N

0 ,) is given in a similar manner by the dlﬁerence
|n the number of the units which finished processing
(the second term in constraint (18) and the units which
began to be “cleaned” (the last term). Constraint (19)
gives the number of all available units. These three
constraints readily replace the allocation constraint (9).



Constraint (20) requires that the duration of the clean-

ing task be equal to 7, j. The cleaning representation

is similar to constructions used by Crooks et al. (1993).
Of course, if a cleaning task begins, it has to end:

2 Jdo 2 lkklo

mln{Zijo, YWk Vi k=k’ el (21)
0

Although constraints (17—20) do not actually place
an upper limit on the number of cleaning operations
performed, this is normally kept to a minimum by the
optimization process itself due to the cost and/or non
availability of utilities, and the restrictions on the
availability of equipment imposed by cleaning.

In practice, the use of (17—20) can lead to very large
numbers of binary variables [O(t?), where t is the
number of tasks]. In many cases, it may be sufficient
to ensure that adequate time is left for a unit to be
cleaned between uses, without attempting to define the
precise timing of the cleaning operations, or to take into
account any demands that these operations may pose
on utilities. In such cases, it is enough to guarantee that,
if the unit starts processing any task k, no task k ’ can
start at least 7j,, ; after the end of the first task. This
can be written as

D taWiim < Wiy Vi K Z ko (22)

m=o0+1

2.1.6. Miscellaneous Constraints. We need some
additional constraints which relate binary variables Wi,
W;,, and Wi, The first of these ensures that W, = 1
oniy durmg processing of task i in unit j

WS < W,

ijo — ijo

WS <1-W

ijo — ij,o—1»

Vi, jeJ; o0, (23)
W2, = W, — W

ijo = ijo ij,o—1
where Wijo =0.
The following constraint

ZWUO

represents the fact that once a task is started, it has to
be finished.

2.2. Objective Function. The model is capable of
accommodating a variety of either economic or system
performance measures. The criterion used in the present
study is the maximization of profit. The profit can be
expressed as

ZW,JO <1,Vi,jeJ, (24)

profit = value of products — cost of feedstocks —
cost of storage — cost of utilities —
cost of cleaning — penalty for missed demands (25)

Each of these terms is quantified as follows:

Ds

value of products = Y'c().Dy + Syy)  (26)
=1

S

where cs is the unit price associated with material in
state s. We note that the above expression includes both
the value of material left in plant storage at the end of
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the horizon, and the value of material delivered to
customers during the horizon.

If it is undesirable for material in certain (e.g.,
intermediate) states to be left in storage at the end of
the time horizon, this can be avoided either by setting
the corresponding c¢s to large negative values or by
explicitly adding the constraint Sgy = 0 to the math-
ematical formulation.

cost of feedstocks = Y ¢S + DRy (27)
S o]

Again, both the value of the initial inventory, and the
cost of material received during processing are taken
into account. It is worth noting here that the quantities
Rs, may be either fixed a priori or allowed to vary,
subject to given upper bounds. In the later case, we will
determine the optimal schedule of obtaining feedstocks
by taking advantage of any demand variations with time
and exploiting the available local storage to the best
possible degree. The cost of including this feature is
minimal since RsS are continuous variables occurring
linearly in the constraints and the objective function.

cost of storage = » ¢S Sty — 1) (28)
S 0

where cf is the running cost of storing a unit amount of
material in state s in unit time, H is the scheduling
horizon, and ty+; = H. Such a cost may, for instance,
be incurred if refrigerated or heated storage facilities
are required for certain states. The cost of storage is
equal to the sum of all cost of storages incurred for
storing material during the time interval (t,, to+1),
which, in turn, is equal to the product of the amount of
the material stored and the time interval length. We
have to note that this expression is exact only for batch
processes since the amount of material stored in state
s remains constant for the time interval (t,, to+1).
However, it is a good approximation for continuous
processes when the cost of storage is small compared
to the value of products since the amount of the material
stored changes continuously within the given time
period.

We assume that the cost incurred by processing the
task i in unit j is given by the combination of a constant
and a variable term of the form

a; + BBy + ﬁijZQijo

where Bjj is the relevant batch size and X,Qjj, is the
relevant amount of material produced by task i on unit
j. Then

cost of utilities = 2 Y (o 2 Wi, + BiiB;;
iclj
By X Qi) (29)

We also assume that the cost incurred by cleaning
task ju - is given by the combination of a constant and
a variable term of the form

i + ﬂjkk’jBkj + ﬁikkfl' 2 ijo
0

where By is the relevant batch size and X,Qy;o is the
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Task2 Prodl

Task1 Int
Task3

Figure 2. State task network, for example BATCH.

Table 1. Data Used for Example BATCHL1

States
states capacity limits prices
feed unlimited 5
int 5000
prodl unlimited 10
prod2 unlimited 8
Costs
Qij = 200 ﬁij =0.6 CQA =0.18
Demands
time
states 4 6 7 10 11 12
prodl 200 300 400 100
prod2 50 150 200 100
Units, Tasks
units processing
units size suitability times
unitl 1500 taskl 1(0.9)
unit2 1000 task2 1(1.1)
unit3 1000 task3 1(0.8)

relevant amount of material produced by the task k on
unit j. Then

costofcleaning=», »  D>W} oy ;+
J kk’eljk=k" o

ﬂjkk’jBkj + ﬁjkk’jrkj) (30)

In many instances, demands cannot be satisfied as
specified. This situation is accommodated by penalizing
for missed demands, where the penalty parameter
reflects the priority and importance of the demand, with
high penalty values corresponding to demands which
must be met. We also assume that each demand has to
be satisfied in full. Then

penalty for missed demands =

Ds J—
3 Y Dy(ePF + V(S — t5) (31)
s I=1

where ¢" = fixed penalty for a missed demand, ¢f¥ =
variable penalty, and t5 = initial demand time.

3. lllustrative Example

In order to illustrate the relative merits of the
proposed formulation vis a vis the conventional UDM
formulation, we consider two examples. The first of
these is BATCHL1 from Sahinidis and Grossmann (1991).
The parameters of this problem are shown in Table 1,
and the recipe network is shown in Figure 2.

We consider the example in both its original and a
modified form in which the uniform time discretization
interval is selected to be 0.1, that is, is much smaller
than the scheduling horizon (12). This would naturally

Table 2. UDM and NUDM Comparison

uUubM NUDM

size size
problem bin cont bin cont
original 33 93 168 99
modified 305 860 168 99

Table 3. UDM and NUDM Comparison for an Example
with Sequence Dependent Changeovers

changeover discretization ~variables
model  time (min)  length (min)  bin cont constraints

UbDM 60 60 60 95 289
NUDM 36 45 57
uUbM 90 30 109 174 77
NUDM 36 45 57
UbDM 75 15 209 334 2432
NUDM 36 45 57
UbDM 66 6 509 814 12797
NUDM 36 45 57

occur if the processing times were not all unity but
instead take on decimal values, e.g., 0.9, 1.1, and 0.8,
and one sought to obtain an exact schedule rather than
one in which the processing times are rounded to the
nearest integer. This is important when, for instance,
one seeks to actually transfer the resulting schedule for
automated execution. The key model dimensions for
BATCH1 under both formulations and data sets are
shown in Table 2.

Note that for the problem form with unit processing
times, the UDM formulation requires only 33 binary
variables vs 168 for the NUDM formulation. However,
as the time discretization interval is reduced to accom-
modate the modified processing times, the UDM for-
mulation grows to 305 binary variables, while the
NUDM remains unchanged.

As a further illustration we consider the single unit
sequencing problem in which given amounts (75 kg
each) of three products (white, gray, and black dye) must
be produced within a fixed time period (6 h). Each
product requires execution of a single task with a
processing time of one hour. Moreover, after utilization
the unit requires a 1 h clean-out time in preparation
for the next task. In this case, the UDM formulation
can be constructed using a 1 h time discretization
length. In addition, we consider three further cases in
which the clean-out time is 90, 75, and 66 min. The
UDM formulation will thus require time discretization
lengths of 30, 15, and 6 min, respectively. The resulting
comparison of formulation dimensionalities is shown in
Table 3.

As can be seen, the UDM formulation will grow from
60 binary variables to 509 binary variables, with a
corresponding growth in both number of continuous
variables and a dramatic growth in constraints, from
297 to almost 13 000. By contrast, the NUDM formula-
tion remains unchanged in number of binary variables,
continuous variables, as well as constraints.

From these illustrations, it can be seen that although
the NUDM formulation suffers the disadvantage of
nonlinearity, the strong dependence of the size of the
UDM formulation on the problem parameters indicates
that a crossover in solution efficiency will generally be
attained as the accuracy in the representation of process
times is increased. Of course, the particular point at
which NUDM formulation will dominate the UDM



formulation in actual computing time will depend on
the particular solution algorithms employed. In part 2
of this series, we will present some computational
results for a specific solution approach to the NUDM
formulation which will make this point explicit.

4. Conclusions

This paper presents a general formulation for plan-
ning the operation of batch or continuous plants which
simultaneously considers the sequencing and scheduling
problems. Furthermore, the approach allows the direct
integration of operations scheduling and control by not
sacrificing accuracy.

The problem has been formulated mathematically as
a MINLP model, the solution of which provides the
optimal allocation of equipment to tasks, the associated
batch sizes and processing rates, and the optimal
utilization of any available storage capacity and scarce
utilities and manpower. A general measure of the
economic performance of the plant is used as the
objective function in this paper.

The formulation presented is aimed at the short-term
deterministic scheduling problem. In a real plant, task
processing times may fluctuate around some mean value
due to impurities in the feed and other operating
conditions. Customer demands may be uncertain also.
Extension of the formulation to handle these and other
uncertainties will be presented in future publications.

The main difficulty of the proposed formulation is the
size of the resulting MINLP problem. Even the solution
of a small example using a generic solver such as GAMS/
DICOPT may require substantial amounts of computa-
tion. Furthermore, the computational cost increases
rapidly with problem size. For realistic scheduling
problems, the MINLP generated may involve several
thousands of binary variables, which by far exceeds the
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solution capabilities of general-purpose methods that
are currently available. Therefore, dealing with such
large problems requires careful exploitation of the
specific features of the problem at hand. These issues
are examined in detail in part 2 of this series, see
Mockus and Reklaitis (1999).
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