Simultaneous Quantitation of Aspergillus flavus/A. parasiticus and Aflatoxins in Peanuts

JOE W. DORNER
U.S. Department of Agriculture, Agricultural Research Service, National Peanut Research Laboratory, PO Box 509, 1011 Forrester Dr SE, Dawson, GA 31742

A method was developed for simultaneous quantitation of Aspergillus flavus/A. parasiticus and aflatoxins in peanuts. Peanut samples were ground with an equal weight of water in a vertical cutter mixer to produce a slurry. Separate subsamples were taken for dilution-plating to determine total colony forming units (CFU)/g of A. flavus/A. parasiticus and for liquid chromatographic analysis to determine aflatoxin concentrations. Dry-grinding peanuts for homogenization of aflatoxins produced high temperatures that killed most of the A. flavus/A. parasiticus propagules. Addition of water to produce a slurry kept the temperature from rising above levels that killed the fungi. A 7 min grind time provided optimal homogenization for both the fungi and aflatoxins, so long as the temperature of the slurry did not exceed 45°C. In the analysis of 60 shelled peanut samples, total aflatoxin concentrations ranged from 0 to 10,000 ng/g and total A. flavus/A. parasiticus ranged from 1.4×10^3 to 3.2×10^6 CFU/g. Regression analysis showed a significant positive correlation ($p < 0.0001$) between the quantities of A. flavus/A. parasiticus and aflatoxin ($R^2 = 0.82$).

Aflatoxins are potent hepatotoxic, carcinogenic metabolites produced by Aspergillus flavus Link, A. parasiticus Speare, and A. nomius Kurtzman et al. (1–3). Aflatoxin contamination of peanuts and other commodities results primarily from invasion and proliferation by A. flavus, although A. parasiticus can be an important contributor to overall aflatoxin contamination, particularly in peanuts (4). A. nomius is relatively rare and is not considered an important species in the contamination of commodities with aflatoxins (5). Because of the toxicity and carcinogenicity of aflatoxins, contaminated commodities destined for human or animal consumption pose a serious health hazard and therefore, are closely monitored and regulated (6, 7). Apart from their effect on health, aflatoxins also impact the agricultural economy through the loss of produce and the time and costs involved in monitoring and decontaminating efforts (8).

Infection of peanuts by A. flavus and A. parasiticus can occur in the field as peanuts are forming and maturing, but infection does not necessarily result in aflatoxin contamination because growth of the fungi must also occur. When peanut plants receive adequate water, either through rainfall or supplemental irrigation, and are essentially healthy, peanuts produce phytoalexins in response to fungal infection, which inhibit proliferation by the invading fungi (9, 10). However, when plants are exposed to severe stress as a result of extended drought, peanuts dehydrate in the soil and lose the ability to produce phytoalexins (11). Under these conditions, invading fungi such as A. flavus have the opportunity to grow and produce aflatoxins (11).

The relationship between A. flavus/A. parasiticus infection and aflatoxin contamination of peanuts is not well understood because, in some studies, high infection percentages were associated with no aflatoxin contamination, and conversely, relatively low infection percentages were associated with high levels of aflatoxin (4, 12–14). In those studies, infection percentages were usually determined by surface-disinfesting a quantity of individual seeds, plating them on an agar medium, and counting the seeds from which A. flavus and A. parasiticus colonies emerged. By necessity, aflatoxin analyses had to be performed on separate samples of peanuts. Results of such studies often have been confusing, particularly when a high percentage of seeds is infected but no aflatoxin is found. Therefore, it has been impossible to consistently correlate A. flavus/A. parasiticus infection with aflatoxin contamination.

In recent years a technique has been developed for biological control of aflatoxin contamination of peanuts (15, 16). Nontoxicogenic strains of A. flavus and A. parasiticus are applied to soil around developing peanut plants and, through competitive exclusion, the applied strains preferentially invade peanuts exposed to late-season drought stress, resulting in reductions in aflatoxin contamination that range from 70 to 99%. However, in many of these studies, the correlation between the type of A. flavus/A. parasiticus (toxicogenic versus nontoxicogenic) infecting peanuts and the amount of aflatoxin produced has not always been clear (unpublished data). These studies also used plating of surface-disinfested peanuts, which gave no indication of the nature of growth by specific strains.
To better understand the relationship between A. flavus colonization of peanuts and aflatoxin contamination, a method was needed that would allow for quantitation of the amount and type of A. flavus/A. parasiticus present, as well as the amount of aflatoxin in the same samples of peanuts. The purpose of this paper is to report a method for simultaneous quantitation of A. flavus/A. parasiticus and aflatoxin in peanuts and the correlation between the quantities of A. flavus/A. parasiticus and aflatoxin in 60 peanut samples.

Experimental

Apparatus

(a) **Vertical cutter mixer (VCM).**—Model RSI6Y-1 (Robot Coupe USA, Jackson, MS); Model UM-12 (Stephan Machinery Corp., Columbus, OH).

(b) **Digital thermometer.**—Electro-therm Model TM99A (Cooper Instrument Corp., Middlefield, CT).

(c) **Blender for aflatoxin extraction.**—Commercial Model 31BL41 (Waring, New Hartford, CT) operated at high speed (22,000 rpm) with 1 qt glass jar.

(d) **Blender for fungal dispersal and dilution.**—Same as (c), but operated at low speed with 1 L stainless steel jars, autoclaved between samples.

(e) **Variable autotransformer.**—10 A, 1.4 KVA (Staco Energy Products, Dayton, OH).

(f) **Liquid chromatograph.**—Pump, Model 515 LC (Waters Corp., Milford, MA); autosampler, Model 717 Plus (Waters); fluorescence detector, Model RF-551 (Shimadzu, Columbia, MD); class VP Chromatography Data System, version 4.2 (Shimadzu); photochemical reactor, “PHRED” (Aura Industries, New York, NY); column, Nova-PAK C18 (150 x 3.9 mm; 4 µm; Waters); mobile phase: water–methanol–1-butanol (1400 + 720 + 25, v/v/v); operating conditions: column temperature, 38°C; flow rate, 0.8 mL/min; injection volume, 20 µL; detector wavelengths, 365 nm (excitation) and 440 nm (emission).

Reagents and Materials

(a) **Extraction solvent.**—ACS grade methanol (Fisher Scientific Co., Pittsburgh, PA).

(b) **Solvents for LC.**—LC grade methanol, 1-butanol (Fisher). LC grade water was prepared with 4-bowl Milli-Q Water System, Model ZD20 (Millipore Corp., Bedford, MA).

(c) **Aflatoxin standard for LC.**—Prepared from crystals of B1, B2, G1, and G2 (Sigma Chemical Co., St. Louis, MO) according to AOAC Official Method 970.44 (17). After spectrophotometric determination of individual aflatoxin concentrations, appropriate amounts of individual standards were combined to produce an LC standard containing 5 ng B1 and G1, and 1.5 ng B2 and G2/mL injection solvent.

(d) **LC injection solvent.**—LC grade methanol–water (62 + 38, v/v) plus 0.1% acetic acid.

Procedure

Prepare peanut–water slurry by grinding shelled peanuts with equal weight tap water in VCM of appropriate size for

Table 1. Quantity and variability of A. flavus/A. parasiticus and aflatoxin in subsamples taken from VCM-ground peanuts (no water) at different time intervals

<table>
<thead>
<tr>
<th>Grind time, min</th>
<th>Temperature, °C</th>
<th>A. flavus/A. parasiticus a</th>
<th>Aflatoxin a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CFU/g</td>
<td>CV, %</td>
</tr>
<tr>
<td>1</td>
<td>32.4</td>
<td>471,600</td>
<td>9.3</td>
</tr>
<tr>
<td>2</td>
<td>42.0</td>
<td>438,200</td>
<td>37.1</td>
</tr>
<tr>
<td>3</td>
<td>55.1</td>
<td>332,400</td>
<td>10.3</td>
</tr>
<tr>
<td>4</td>
<td>67.1</td>
<td>123,600</td>
<td>46.5</td>
</tr>
<tr>
<td>5</td>
<td>76.7</td>
<td>5,400</td>
<td>194.0</td>
</tr>
<tr>
<td>6</td>
<td>81.0</td>
<td>2,400</td>
<td>55.9</td>
</tr>
<tr>
<td>7</td>
<td>87.1</td>
<td>7,200</td>
<td>63.2</td>
</tr>
</tbody>
</table>

a Values are means of 5 determinations. Means in a column followed by a different letter are significantly different (p < 0.05).
7 min. To obtain better homogenization, size of VCM bowl should be such that it is \(\geq \) half full with the peanut–water mixture. For quantitation of \textit{A. flavus}/\textit{A. parasiticus}, transfer 200 g subsample of slurry to autoclaved, stainless steel blender jar and add 200 mL water. Blend diluted slurry for 1 min at low speed (autotransformer operated at 30% maximum output). Plate serial dilutions on modified dichloran-rose ben- gal medium (5, 18) and incubate for 2–3 days at 37\(^\circ \)C. For quantitation of aflatoxins, transfer separate 200 g subsample of original slurry to 1 qt glass blender jar, add 400 mL methanol, and blend at high speed for 1 min. Perform sample cleanup and LC analysis as described by Dorner and Cole (19), or use other suitable aflatoxin quantitative method. A schematic of the procedure is presented in Figure 1.

\textbf{Effect of Dry-Grinding Peanuts on Quantity and Variability of \textit{A. flavus}/\textit{A. parasiticus} and Aflatoxin}

A study of the variability of aflatoxin in peanut subsamples produced with different mills (20) showed that a grind time of ca 6–7 min was necessary to produce acceptably low variability among subsamples taken from a single ground sample. Subsamples of peanuts ground in a VCM can be dilution-plated to determine the quantity of \textit{A. flavus}/\textit{A. parasiticus}, but grinding peanuts in a VCM for such a length of time produces relatively high temperatures that could kill fungi present. Therefore, an experiment was conducted to determine the effect of grind time on the quantity of \textit{A. flavus}/\textit{A. parasiticus} and aflatoxin found in subsamples. A 1.5 kg sample of shelled peanuts was ground in the RS16Y-1 VCM for increasing 1 min intervals between 1 and 7 min. The temperature was measured with the digital thermometer and five 50 g subsamples were taken for analysis at each time interval. For fungal counts, a water slurry was prepared by homogenizing each 50 g subsample in 150 mL water at low speed and dilution-plating 1 mL slurry. To quantitate aflatoxins, 225 mL methanol was added to the peanut–water slurry, extracted at high speed, and analyzed by LC.

\textbf{Effect of Grinding Peanuts with Water on Temperature of Ground Samples}

To determine the effect of adding water before grinding on temperature of the resulting slurry in comparison with dry grinding, three 1.5 kg samples of peanuts were ground alone and with 1.5 kg water in the RS16Y-1 VCM for 7 min with temperature measured every 1 min.

\textbf{Effect of Slurry Temperature on Survivability of \textit{A. flavus}/\textit{A. parasiticus}}

The temperature of the peanut–water slurry at different grind times is somewhat dependent on the total mass of the slurry and the particular VCM used. For example, smaller samples ground in the Robot Coupe VCM have a higher temperature for a given grind time than do larger samples ground in the Stephan VCM. However, fungal survivability during grinding is more dependent on temperature than on grind time. Therefore, the effect of slurry temperature on survivability of \textit{A. flavus}/\textit{A. parasiticus} was determined by grinding 1.5 kg peanuts with 1.5 kg water in the RS16Y-1 VCM and taking subsamples for dilution plating at 5\(^\circ \)C increments, beginning when the slurry temperature reached 35\(^\circ \)C and ending at 60\(^\circ \)C. Three subsamples were taken at each temperature, and the experiment was conducted with 2 separate samples of peanuts from the same lot.

\textbf{Effect of Slurry Grind Time on \textit{A. flavus}/\textit{A. parasiticus} and Aflatoxin Subsample Variability}

To determine the effect of slurry grind time on \textit{A. flavus}/\textit{A. parasiticus} and aflatoxin subsampling variability, a single large sample (3 kg peanuts + 3 kg water) was ground in the larger capacity UM-12 VCM. Five separate 100 g subsamples were collected for \textit{A. flavus}/\textit{A. parasiticus} and aflatoxin quantitation at 1, 3, 5, and 7 min. Subsample size was reduced so that an adequate amount of material remained in...
the VCM after each time interval for further grinding and subsampling.

Correlation Between A. flavus/A. parasiticus and Aflatoxin

The previously described procedure was used in analysis of 60 samples of peanuts produced during crop year 1999 in southwestern Georgia. Samples were obtained from various farmers’ stock and shelled stock lots to represent a wide variety of production and storage conditions. Crop year 1999 was characterized by widespread late-season drought; therefore, many lots were suspected to contain high concentrations of aflatoxin. To reduce sampling error as much as practical, large samples averaging 3.6 kg shelled peanuts were processed with an equal weight of water in the UM-12 VCM. Samples were ground for 7 min, and subsamples were analyzed for A. flavus/A. parasiticus and aflatoxin as depicted in Figure 1.

Statistics

Aflatoxin concentrations were log-transformed before statistical analysis when necessary to normalize distributions. Data were subjected to analysis of variance and regression analysis by using SigmaStat for Windows Version 1.0 (Jandel Corp., San Rafael, CA). Multiple comparisons were made with the Student-Newman-Keuls method.

Results

Effect of Dry-Grinding Peanuts on Quantity and Variability of A. flavus/A. parasiticus and Aflatoxin

Results of the experiment showed that significantly less A. flavus/A. parasiticus was recovered beginning with the 3 min grind time, when the temperature rose from 42.0 to 55.1°C (Table 1). The density of A. flavus/A. parasiticus continued to decrease as the grind time and temperature increased until after 5 min, when the density did not change significantly. Approximately 99% of the viable A. flavus/A. parasiticus present after 1 min was apparently killed by the high temperature at 5 min. However, aflatoxin concentrations showed no clear pattern as a direct result of time and increased temperature. The second highest aflatoxin concentration was found after grinding for 6 min when the temperature had reached 81°C. There were no significant differences in aflatoxin concentrations between grind times of 1 and 5 min and between 4 and 7 min. The coefficients of variation (CVs) for aflatoxin appeared to stabilize at 5 min. These data suggest that differences in aflatoxin concentration were probably associated with subsampling variability and not the temperatures produced during grinding.

Effect of Grinding Peanuts with Water on Ground Samples

Adding an equal weight of water to peanuts reduced the temperature of the slurry compared with that of peanuts ground alone (Figure 2). The quantity of A. flavus/A. parasiticus recovered was reduced significantly after 3 min of dry-grinding at 55.1°C (Table 1), whereas the maximum temperature of the slurry after 7 min was only 46.3°C. The increase in slurry temperature over time was nearly linear (R² = 0.985; n = 3; p < 0.0001).

Effect of Slurry Temperature on Survivability of A. flavus/A. parasiticus

Table 2 illustrates the effect of increasing slurry temperature on survivability of A. flavus/A. parasiticus. There were no significant differences in density of A. flavus/A. parasiticus recovered between 35 and 45°C. The first significant (p < 0.0001) reduction in A. flavus/A. parasiticus was seen when the temperature rose from 45 to 50°C, and significant reductions continued to 60°C when <1% of the A. flavus/A. parasiticus originally found could be recovered.

Effect of Slurry Grind Time on A. flavus/A. parasiticus and Aflatoxin Subsample Variability

Means and CVs for A. flavus/A. parasiticus colony-forming units (CFU) per gram and aflatoxin concentrations in peanuts ground with water for various time intervals up to 7 min are presented in Table 3. CVs for A. flavus/A. parasiticus were relatively low at all time intervals and were particularly low for 3 min and beyond. Aflatoxin variability was high after 1 min but dropped dramatically by 3 min. The relatively high CV of 32.9% at 5 min resulted from one of the 5 subsamples that contained twice as much aflatoxin as the other 4 subsamples. When that subsample was not included in the calculations, the CV dropped to 7.6%. The high level of aflatoxin associated with one subsample probably resulted from a relatively larger particle containing a high concentration of aflatoxin in that subsample. The average aflatoxin concentration for the entire sample was about 350 ng/g, whereas A. flavus/A. parasiticus averaged about 577 000 CFU/g.

Correlation Between A. flavus/A. parasiticus and Aflatoxin

Analysis of 60 samples of peanuts revealed a wide range in quantities of both A. flavus/A. parasiticus and aflatoxins. Total aflatoxin concentrations ranged from 0 to 10 000 ng/g, and to-

Table 3. Quantity and variability of A. flavus/A. parasiticus and aflatoxin in subsamples taken from a VCM-ground peanut–water slurry at different time intervals

<table>
<thead>
<tr>
<th>Grind time, min</th>
<th>A. flavus/A. parasiticus</th>
<th>Aflatoxin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFU/g</td>
<td>CV, %</td>
</tr>
<tr>
<td>1</td>
<td>548400 a</td>
<td>16.5</td>
</tr>
<tr>
<td>3</td>
<td>572000 a</td>
<td>5.1</td>
</tr>
<tr>
<td>5</td>
<td>589000 a</td>
<td>9.1</td>
</tr>
<tr>
<td>7</td>
<td>599000 a</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Values are means of 5 determinations. Means in a column followed by the same letter are not significantly different (p > 0.05).
Discussion

Peanut samples of varying size can be analyzed with this procedure by using a VCM of appropriate size. Small samples can be processed in a blender, but introduce greater error. Horn et al. (4) plated whole kernels as well as peanut–water slurries containing 75 g peanuts to determine the degree of infection of seeds by A. flavus and A. parasiticus, but aflatoxin concentrations were determined on separate samples. They found that both the whole seed platings and dilution platings of peanut slurries were poor indicators of the amount of aflatoxin. Therefore, it is advisable to use the largest sample size possible to determine the quantities of both A. flavus/A. parasiticus and total aflatoxins present in peanuts (Figure 3; R² = 0.82; n = 60).

For aflatoxin extraction, 200 mL methanol is added to 200 g of the peanut–water slurry. This gives a solvent:peanut ratio of 3:1 with a methanol:water ratio of 67:33. Many commonly used methods for aflatoxin analysis of peanuts use a solvent:peanut ratio of 5:1 with a methanol:water ratio of 60:40, or a solvent:peanut ratio of 2:1 with a methanol:water ratio of 80:20. Cole and Dorner (22) studied the extraction efficiency of different solvents and solvent:peanut ratios and found that the best combination was a solvent:peanut ratio of 3:1 with a methanol:water ratio of 80:20. However, evaluation of those data indicates that the ratios used in this procedure should provide efficient extraction of aflatoxin from peanuts.

Application of this method to the analysis of 60 samples of peanuts representing a wide range of contamination showed a remarkably high correlation between the quantity of total A. flavus/A. parasiticus and aflatoxin (4, 12–14). Although this procedure does not indicate the percentage of peanuts infected with A. flavus/A. parasiticus, it does indicate the degree of proliferation of A. flavus/A. parasiticus in peanuts. This could be particularly useful in studies of preharvest aflatoxin contamination.
tion, when the stress period is insufficient to result in contamination with aflatoxin but some degree of infection and proliferation by *A. flavus/A. parasiticus* has taken place. For example, in evaluating peanut genotypes for resistance to *A. flavus/A. parasiticus* and aflatoxin contamination, the degree of *A. flavus/A. parasiticus* proliferation could provide very useful information when aflatoxin has not formed or when aflatoxin results are inconsistent.

Use of this method also allows for determination of the degree of proliferation in peanuts by the individual species, *A. flavus* and *A. parasiticus*, as well as differentiation among strains of the individual species. Although data for the 2 species were totaled for simplicity of reporting in this study (*A. parasiticus* accounted for only 2.2% of the total), the species were differentiated easily on the medium used for dilution plating (5). The method has also been used to determine the ratio of toxigenic to nontoxigenic strains of *A. flavus* in peanuts from aflatoxin biocontrol studies. This provides a direct measure of the competitive exclusion that is achieved by applying competitive, nontoxigenic strains of *A. flavus* and *A. parasiticus* to soil (23).

Acknowledgments

The technical expertise and support of Milbra Schweikert, Valerie Vanderpool, and Sam Hilton, III (USDA) are gratefully acknowledged.

References

17. *Official Methods of Analysis* (1995) 16th Ed., AOAC INTERNATIONAL, Gaithersburg, MD, Method 970.44, sec. 49.2.02