www.rsc.org/jaas

Simultaneous analysis of ²³⁷Np and Pu isotopes in environmental samples by ICP-SF-MS coupled with automated sequential injection system

C. S. Kim,*a C. K. Kima and K. J. Leeb

Received 5th January 2004, Accepted 19th March 2004 First published as an Advance Article on the web 17th May 2004

A simultaneous analytical method for ²³⁷Np, ²³⁹Pu and ²⁴⁰Pu has been developed using sector field inductively coupled plasma mass spectrometry (ICP-SF-MS) detection combined with an automated sequential injection (SI) separation system. The chemical purification of these actinides was carried out on an actinide-specific extraction chromatographic resin, TEVA-Spec, in an automated SI system. The similar chemical behaviors of Np and Pu on TEVA-Spec was confirmed by recovery test after treating with ascorbic acid in 5 M HNO₃. TEVA-Spec maintained its re-usability, giving high and consistent chemical recovery, and showed good selectivity for Np and Pu and a low memory effect during the consecutive analysis of nine replicate samples. The high chemical recovery (>90%), reliable accuracy and repeatability of ²³⁷Np and Pu isotope purification using the SI system were proved using standard reference materials. Low detection limits of 2.5, 2.1 and 0.42 fg ml⁻¹ were obtained for ²³⁷Np, ²³⁹Pu and ²⁴⁰Pu, respectively, which make it possible to analyze these nuclides in samples of soil and sediment as low as 1 g. With the exception of the preparation process required prior to loading a sample, all chemical purifications were carried out automatically by the programmed SI system, and were completed within 1 hour, which included measurement by ICP-SF-MS. This method was successfully applied to the analysis of the environmental levels of ²³⁷Np and Pu in soil, sediment and in biological samples.

Introduction

A number of radionulides have been released into the environment by nuclear weapon testing, nuclear facilities and nuclear accidents. Among these radionulides, $^{237}\mathrm{Np}$ ($T_{1/2}=2.14\times10^6\mathrm{y}$), $^{239}\mathrm{Pu}(T_{1/2}=2.41\times10^4\mathrm{y})$ and $^{240}\mathrm{Pu}(T_{1/2}=6.56\times10^3\mathrm{y})$ are important isotopes from the viewpoint of their extremely long half-lives and their radiological toxicities. Accurate and rapid analysis of these isotopes in environmental samples is significant in the understanding of their behaviors in the environment and monitoring of their concentrations around nuclear facilities.

From the point of view of their rapid measurement and its low detection limit, ICP-MS is an attractive measurement tool, as opposed to radiometric methods such as alpha spectrometry, which have generally been used for the analysis of alpha radionuclides. Kim *et al.*¹ measured ²³⁷Np and Pu isotopes in the soil and sediment using HR-ICP-MS, Truscott *et al.*^{2,3} analyzed these actinides in soil (NIST 4353) and a biological sample (NIST 4352) by ICP-SF-MS, and Egorov et al.4 developed an on-line ICP-MS method for the determination of the several actinides, including Np and Pu, in a dissolved vitrified nuclear waste sample. TIMS (thermal ionization mass spectrometry)⁵ and AMS (accelerator mass spectrometry)⁶ have also been used to measure ²³⁷Np in environmental samples, and have the merit of a low detection limit and high accuracy compared with ICP-SF-MS. However, although TIMS and AMS are more sensitive than ICP-MS for the analysis of ²³⁷Np, they require a complicated sample preparation procedure. For Pu analysis, 242 Pu (3.8 \times 10⁵ y) and 244 Pu (8.2 \times 10⁷ y)⁷ are used as tracers, but there is no an available tracer having a long half-life for 237 Np analysis. Although 236 Np (1.2 × 10⁵ y) has been used as a Np tracer in the determination of 237 Np by ICP-MS⁸ and TIMS, ⁹ it is not easy to prepare because 236 Np is produced by deuteron bombardment of ²³⁵U.

To overcome this difficulty, Chen *et al.*¹⁰ developed a way of measuring ²³⁷Np using a ²⁴²Pu tracer; however, the method still involves much time to separate ²³⁷Np from the bulk sample matrix. Recently, Kenna⁸ and Rosa *et al.*¹¹ developed new analytical methods for the determination of ²³⁷Np and Pu isotopes in environmental samples by ICP-SF-MS. They purified Np and Pu using same chemical separation procedure and calculated the concentration of ²³⁷Np and Pu isotopes by the isotope dilution technique, where ²³⁶Np, ²³⁹Np and ²⁴²Pu standard were added as a tracer for Np and Pu. However, both methods are indispensable for a stringent and tedious chemical purification in the analysis of ²³⁷Np and Pu isotopes.

During the past 10 years, solid phase extraction chromatography resins have been commonly used to purify actinide elements in environmental samples. ^{12,13} Among these resins, TEVA-Spec has been shown to have a high affinity for tetravalent actinides in strong nitric acid, but a low affinity in weak hydrochloric acid. ¹⁴ Thus, TEVA-Spec could be applied to the simultaneous separation of ²³⁷Np and Pu, and ²⁴²Pu could be used as a tracer for the quantitative determination of both actinides. For a successful application of TEVA-Spec to the simultaneous analysis of ²³⁷Np and Pu, first the chemical recovery of the two actinides by the separation process should be similar. Secondly, prior to loading samples into TEVA-Spec, both actinides in solution should be converted to the tetravalent state. Finally, the ²³⁸U level in the purified solution should be reduced to less than about 100 pg ml⁻¹ to minimize its spectral (²³⁸U/²³⁷Np, ²³⁸U/²³⁹Pu) and polyatomic (²³⁸UH/²³⁹Pu) interferences in the quantitative analysis of ²³⁷Np and ²³⁹Pu. ¹⁵⁻¹⁷

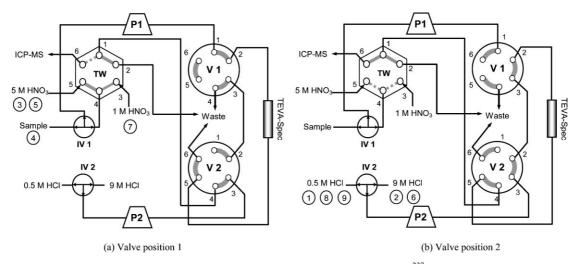
Recently, SI techniques have been applied to save analysis time and labour in the determination of actinides, ^{18,19} and are useful for developing automating chemical procedures for small sample quantities. These SI techniques, coupled with a simple separation method involving a single column,

^aKorea Institute of Nuclear Safety (KINS), P.O. Box 114, Yusong, Daejeon 305-338, Korea. E-mail: cskim@kins.re.kr; Fax: 82-42-868-0556; Tel: 82-42-868-0264 ^bDepartment of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology, Korea

Table 1 Operating conditions of ICP-MS and the sample introduction system

ICP and plasma conditions				
1350 14 1.7 0.77 1.6 5.0×10^{-4} 8.0×10^{-8}				
Sample introduction system (Aridus)				
1.85 80 160 0.10 T1-H microconcentric nebulizer				
Data acquisition parameters				
²³⁷ Np 236.4-237.6 200 100 1.5 3	238U 237.8-238.6 20 100 1.3 3	239Pu 238.4-239.6 200 100 1.5 3 430	²⁴⁰ Pu 239.4–240.6 400 100 1.5 3	242Pu 241.4-242.6 40 100 1.5 3
	1350 14 1.7 0.77 1.6 5.0×10^{-4} 8.0×10^{-8} Sample introduction system (Aridus) 1.85 80 160 0.10 T1-H microconcentric nebulizer Data acquisition parameters 237Np 236.4-237.6 200 100 1.5 3	$\begin{array}{c} 1350 \\ 14 \\ 1.7 \\ 0.77 \\ 1.6 \\ 5.0 \times 10^{-4} \\ 8.0 \times 10^{-8} \\ \\ \hline \\ Sample introduction system (Aridus) \\ \hline \\ 1.85 \\ 80 \\ 160 \\ 0.10 \\ \hline \\ T1\text{-H microconcentric nebulizer} \\ \hline \\ Data acquisition parameters \\ \hline \\ 237 \\ Np \\ 236.4-237.6 \\ 200 \\ 20 \\ 200 \\ 100 \\ 1.5 \\ 3 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

and their combination with TEVA-Spec resin, offer a useful means of automating to the analysis of ultra-trace levels of ²³⁷Np and Pu isotopes in environmental samples. The aim of this study was to determine the optimum separation conditions required for the simultaneous analysis of ²³⁷Np and Pu isotopes by coupling ICP-SF-MS with an automated SI system.


Experimental

ICP-MS and sequential injection (SI) system

A PlasmaTrace2 (Micromass, Manchester, UK) was equipped with an ASX 100 microautosampler and an Aridus desolvating introduction system (Cetac Technologies, Omaha, NE, USA) involving a T1-H microconcentric nebulizer. The operation conditions used for ICP-SF-MS and the sample introduction system are listed in Table 1. The isotopes of interest were measured three times in peak hopping mode to calculate the

mean and standard deviation of measurement. All data acquisitions were carried out in low-resolution mode with different dwell times for actinides based on the difference of concentration in the sample. Mass bias correction was used to correct for different mass responses instead of internal standard normalization to calculate ²³⁷Np and Pu isotope concentrations using the isotope dilution (ID) method.

An automated SI system, shown schematically in Fig. 1, was equipped with a PrepLab (Fison, Manchester, UK) liquid handing system and a Rheodyne two-way valve, which was used to divert the final pathway of eluent to the ICP-MS. With the exception of peristaltic tubing, which was of 0.95 mm id Tygon $^{\circledR}$, all transport lines were of 0.8 mm id poly(tetrafluoroethylene) (PTFE) tubing (Upchurch Scientific, WA, USA), and the final line from the column to the microautosampler was of 0.1 mm id polyether ether ketone (PEEK) tubing to minimize the dead volume. The size of the micro borosilicate column located in the PrepLab was 3 mm id \times 25 mm (Omnifit, Cambridge, England).

Fig. 1 Schematic diagram of the sequential injection (SI) system for the simultaneous analysis of ²³⁷Np and Pu isotopes. P1 and P2, peristaltic pump; V1 and V2, dual two-way six-port valve; TW, two-way valve; IV1 and IV2, isolation valve. The circled numbers indicate the procedure order, as described in Table 2.

Reagents and materials

Deionized water (18 MΩ cm⁻¹) was obtained from a Milli-Q Plus System (Millipore, Bedford, MA, USA) and was used for all dilutions. Super-pure HCl (AA-100, Tama Chemicals. Japan) was used as an eluant in the SI system. Electronic grade concentrated nitric acid (Dongwoo Pure Chemicals, Iksan, Korea) was also used for the preparation of the loading sample and for resin rinsing. The TEVA-Spec was purchased from the Eichrom Inc. (Darien, IL, USA) in powder form, and swollen for at least 7 days with 1 M high purity nitric acid before packing. H₂O₂ (Merck, Darmstadt, Germany), sodium nitrite (Aldrich, Milwaukee, WI, USA) and ascorbic acid (Merck) were of GR grade. ²⁴²Pu standard solution (SRM 4334G) and ²³⁷Np standard solution (SRM 4341) were supplied by the National Institute of Standards and Technology (NIST, Gaithersburg, MD, USA). For the validation test, one soil (IAEA-Soil-6), three kinds of sediment (IAEA-135, NIST-4350B, NIST-4357) and one biological reference material (IAEA-307) were purchased from the International Atomic Energy Agency (IAEA, Vienna, Austria) and NIST, respectively.

Sample preparation and chemical purification using the SI system

Prior to chemical treatment, approximately 1 g of four standard reference materials (IAEA-Soil-6, IAEA-307, NIST-4350B, NIST-4357) and 50 mg of IAEA-135 were weighted in a 20 ml quartz beaker, and then ashed ashed at 500 °C in a muffle furnace for 1 hour to decompose organic matter. After a ²⁴²Pu tracer and concentrated nitric acid had been added, the mixture was boiled with stirring on a hot-plate for 1 hour. The filtrate obtained by passing this mixture through a glass fiber filter (GF/C, Whatman, USA) was heated and dried on a hot-plate until it became sludge-like. The resulting solution was then adjusted to 5 M HNO₃ and refiltered using a membrane filter under the 20 ml Teflon vial. Ascorbic acid was added to the filtered solution and the solution stood for 1 hour to allow the redox reaction to go to completion prior to injecting the

loading solution into the SI system. The detailed operation of the SI system is described in Table 2.

The purification processes were designed with a total of 9 steps, from the rinsing step of resin once used in a previous sample to the final elution step. 5 M HNO₃, 1 M HNO₃ and 9 M HCl were used as a rinsing solution for U, Th and bulk elements in the sample solution. The upper pump delivered the loading solution and 5 M HNO₃ at a flow rate of 1.6 ml min⁻ and the lower pump was used for the 1 M HNO₃, 9 M HCl and 0.5 M HCl at a flow rate of 0.8 ml min⁻¹. An additional twoway valve system allows an alternative route for the eluant in the fully automatic separation system. The whole procedure was performed automatically using an ICP-MS operation program and the two-way valve control system. In the final separation step, that is step 9, the purified Np and Pu from the column were transferred to a 2 ml conical Teflon vial placed in a microautosampler, and then transferred to the plasma using the sample introduction system.

Results and discussion

Sensitivity of actinides by ICP-SF-MS

Because ²⁴²Pu was used as a tracer for the simultaneous determination of ²³⁷Np and Pu isotopes by the ID method, sensitivity differences for the two actinide determinations by ICP-MS should be corrected for. Sensitivities for actinide elements were investigated using four actinides, *i.e.*, ²³⁷Np, ²³⁸U, ²⁴²Pu, and ²⁴³Am, as described in Table 1. As is demonstrated in Fig. 2, the sensitivity difference between these four nuclides is not significant, which agrees with the findings of Jones, ²⁰ because of their similar ionization energies and atomic masses. Moreover, the sensitivity difference of approximately 1% between ²³⁷Np and ²⁴²Pu is not significant considering the variablity associated with the recovery ratio of ²³⁷Np/²⁴²Pu at chemical separation. However, this difference was included as a mass bias correction factor when calculating the sample ²³⁷Np concentration.

Table 2 SI system program and description of program steps

			_	Flow rate	/ml min ⁻¹			
Step	Pumped medium	Dual two-way valve position	Two-way valve position	Pump 1	Pump 2	Isolation valve 1	Isolation valve 2	Time/s
1	0.5 M HCl	2	1	0	0.83	_	Left	150
2	9 M HCl	2	1	0	0.83	_	Right	40
3	5 M HNO ₃	1	2	1.6	0	Right	_	120
4	5 M HNO ₃	1	1	1.6	0	Left	_	420
5	5 M HNO ₃	1	2	1.6	0	Right	_	240
6	9 M HCl	2	1	0	0.83	_	Right	240
7	1 M HNO ₃	1	1	1.6	0	Right	_	180
8	0.5 M HCl	2	1	0	0.83	_	Left	19
9	0.5 M HCl	2	2	0	0.83	_	Left	60

Description of step

- 1 0.5 M HCl is pumped through resin to rinse residual elements.
- 2 9 M HCl is pumped through resin to fill up the bottom tube.
- 3 5 M HNO₃ is pumped through column to pre-treat resin at 1.6 ml min⁻¹.
- 4 Sample is loaded to TEVA-Spec at 1.6 ml min⁻¹.
- 5 5 M HNO₃ is pumped to rinse residual sample and interference materials.
- 6 9 M HCl is pumped through resin to
- 7 1 M HNO₃ is pumped to rinse residual U.
- 8 0.5 M HCl is pumped through TEVA-Spec to elute Np at 0.83 ml min⁻¹ for 19 s until 0.5 M HCl reaches the two-way valve.
- 9 About 0.83 ml of 0.5 M HCl is pumped to elute Np and Pu on TEVA-Spec.

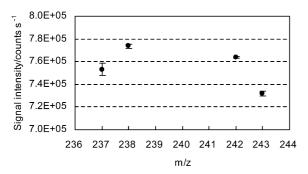


Fig. 2 Sensitivity of several actinides by ICP-SF-MS.

Spectral interference of ²³⁸U

The polyatomic interference induced by ²³⁸U in the measurement of Pu isotopes by ICP-MS is well known. ^{15,16} An Aridus desolvating introduction system greatly lowered this interference by removing solvent from the eluate. Furthermore, high level ²³⁸U in a sample also affects the quantitative analysis of ²³⁷Np by ICP-MS. To quantify the interference induced by ²³⁸U, the pseudo concentration of ²³⁷Np defined as 'the concentration of ²³⁷Np corresponding to the down-mass tailing of ²³⁸U peak on the 237 mass peak' was calculated with ²³⁸U standard solutions at two mass resolutions.

As is shown in Fig. 3, 1 ng ml⁻¹ of U caused a positive error corresponding to approximately 20 fg ml⁻¹ of ²³⁷Np at the two mass resolutions without large difference. The influence of spectral interference by ²³⁸U at 237 *mlz* was similar to that due to molecular interference at 239 *mlz*, as we reported previously. Even though the use of high mass resolution can help with the suppressing effect of the peak tailing from the high abundant neighboring isotopes without a reduction in the limit of detection (LOD), it also decreases signal intensity for the ²³⁷Np peak. Consequently, applying high mass resolution is impractical to the measurement of ultra-low levels of ²³⁷Np in the environmental samples as well as the elimination U in the chemical separation procedure is the best way to minimize the spectral interference of ²³⁸U.

Behavior of Np and Pu in TEVA-Spec

In order to examine whether ²⁴²Pu could be used as a tracer for the simultaneous analysis of ²³⁷Np and Pu isotopes in the present separation scheme, the elution patterns of Np and Pu were plotted (Fig. 4). Eluate fractions were collected at 10 s intervals and the chemical recoveries of Np and Pu were calculated with the activity spiked, respectively. This experiment was performed with a standard solution containing ²³⁷Np, ²⁴²Pu and 30 mg of Fe^{III} in 5 M HNO₃. Although Np eluted a little faster than Pu from the TEVA-Spec resin, as depicted in Fig. 4, the total chemical recoveries of Np and Pu were nearly identical, about 98% and 99% in 0.83 ml of eluate, respectively. These high and similar chemical recoveries imply that ²⁴²Pu could be used as a common tracer for simultaneous

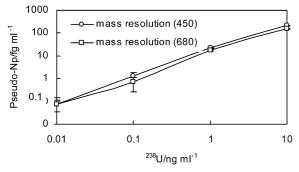


Fig. 3 Spectral interference of ²³⁸U at two mass resolutions.

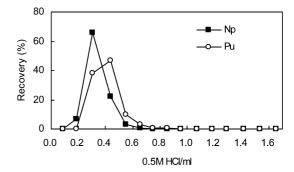


Fig. 4 Elution profile for Np and Pu in TEVA-Spec.

analysis by ICP-SF-MS. As shown in the elution curve, most of the Np and Pu retained in the TEVA-Spec could be recovered with only 0.83 ml of eluant, which corresponded to running the SI system for 60 s.

The similar recoveries of both actinides by TEVA-Spec was reconfirmed by spike testing. Six spiked solutions with the same concentrations of ²³⁷Np and ²⁴²Pu were separated by the SI system described in the experimental section. Although the chemical recovery of each nuclide ranged from 87 to 95%, the average ²³⁷Np/²⁴²Pu ratio was 0.99 with a little variation, which supports the notion that ²⁴²Pu is a suitable tracer for the simultaneous analysis of ²³⁷Np and Pu using the SI system in combination with TEVA-Spec.

Effect of nitric acid concentration on the purificaiton of Np and Pu by TEVA-Spec

According to the elution profiles of radionuclides by TEVA-Spec, strong Np and Pu retention was observed in nitric acid media at ca. 3 M HNO₃. ²² However, the elution patterns of Np and Pu may be changed by the sample matrix composition and redox treatment. Furthermore, it is difficult to maintain the nitric acid concentration in the loading solution after volume reduction by evaporating off the filtered acid extractant in order to reduce the volume of the loading solution. For this reason, the recovery test for both actinides was performed with increasing concentration of nitric acid in the loading solution, i.e., from 3 M to 8 M. As plotted in Fig. 5, the chemical recoveries of Np and Pu were high in the ranges 3-6 M and 4–7 M, respectively. The recovery ratio of ²³⁷Np/²⁴²Pu was maintained with a unit value in the concentration range 4-6 M and recovery was sufficiently high. Thus, 5 M was chosen as an optimum nitric acid concentration for the loading and rinsing solution in the SI system. In addition, U was eliminated with an average decontamination value of 5×10^5 in a consistent manner for all the concentrations tested. The decontamination factor was defined as 'the total amount of an atom in the loading solution divided by the total amount of the atom in the final eluate'.

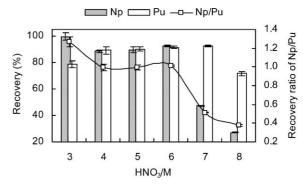


Fig. 5 Effect of the concentration of nitric acid on separation of Np and Pu in TEVA-Spec.

Effect of ascorbic acid on the oxidation states of Np and Pu

According to the pH of the sample solution, Np can exist as $\mathrm{Np^{IV}}$, $\mathrm{Np^{V}}$ or $\mathrm{Np^{VI}}$, and Pu as $\mathrm{Pu^{III}}$, $\mathrm{Pu^{IV}}$, $\mathrm{Pu^{V}}$ or $\mathrm{Pu^{VI}}$. In strong nitric acid, $\mathrm{Pu^{V}}$ is very unstable and tend to disproportionate to +3, +4 and +6, whereas for Np, $\mathrm{Np^{V}}$ predominates. 23,24

As described by Holwitz *et al.*,²² TEVA-Spec shows a high affinity only for the tetravalent actinide in the nitric acid matrix: therefore, Np and Pu in the loading sample should be adjusted to this state for both to be retained during the ion exchange step. Meanwhile, ²³⁸U, the most important element related to the interference effect in the analysis of ²³⁷Np and ²³⁹Pu by ICP-MS, can be easily removed by nitric acid treatment, since the hexavalent state of U, the dominant oxidation state in environment samples, has very low capacity factor (*k'*) on TEVA-Spec. Consequently, the manipulation of oxidation state is an important procedure in the selective separation of target nuclides from bulk and interference elements.

Perna et al. 19 and Kenna 8 sequentially used several redox agents, i.e., Mohr's salt and NaNO₂, to prepare Pu^{IV} and Np^{IV}. However, these methods are sensitive to reaction time, especially NaNO2, and require a complicated separation procedure. In order to find a redox agent capable of guaranteeing similar recoveries of both actinides with simple treatment, three reagent types frequently used for the redox reaction of these actinides were examined with respect to chemical recovery. All investigations were carried out in a working solution (3 mg ml⁻¹ Fe, ²³⁷Np and ²⁴²Pu tracer in 5 M HNO₃) using the same separation procedure as used for real samples. Table 3 shows that ascorbic acid was best in this respect, and that the recoveries of both actinides were similar. Pu recovery after NaNO₂ treatment was similar to that obtained with no added redox agent. The absorption peak of PuVI at 830 nm in the UV-Vis spectra was confirmed in the loading solution containing no redox agent. The absorption peak for PuVI completely disappeared after treatment with ascorbic acid, whereas NaNO2 had no effect on the reduction of Pu^{IV} . So, in the present study, only ascorbic acid was used, because it effectively reduces Np^V to Np^{IV} and Pu^{VI} to Pu^{IV} in the loading solution.

Fig. 6 presents that the recoveries of ²³⁷Np and ²⁴²Pu and the recovery ratio of ²³⁷Np/²⁴²Pu with elapsed time after treating the loading solution with ascorbic acid. As can be seen from Fig. 6, both actinides were recovered at around 90% after 20 min and the recovery increased slightly with reaction time. Thus, the loading solution was treated with ascorbic acid for at least 20 min. In the case of no treatment of ascorbic acid, the recoveries of Np and Pu were 0.4% and 60%, respectively.

To determine the optimum amount of ascorbic acid that should be added to the loading solution, the chemical recoveries of Np and Pu were examined *versus* ascorbic acid concentration. After adding ascorbic acid, 10 ml of the working solution (3 mg ml⁻¹ Fe, ²³⁷Np and ²⁴²Pu tracer in 5 M HNO₃) were left for 30 min, and then both actinides were separated on the SI system. As presented in Fig. 7, the recoveries of both actinides reached about 90% in 10 mg of ascorbic acid, and did not increase further up to 200 mg.

Table 3 Chemical recovery of Np and Pu using different redox agents

	Camanatian	Recovery (%)
Redox agent	Concentration/ M	Np	Pu
None Hydrogen peroxide (H ₂ O ₂) Sodium nitrite (NaNO ₂) Ascorbic acid	1.0 0.2 0.06	$ \begin{array}{c} 1.1 \pm 0.4 \\ 25 \pm 13 \\ 6.2 \pm 2 \\ 89 \pm 1 \end{array} $	62 ± 4 35 ± 12 67 ± 3 88 ± 1

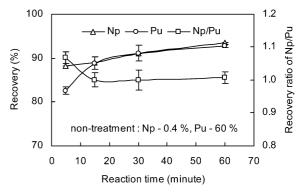


Fig. 6 Chemical recovery of Np and Pu with 0.06 M ascorbic acid reaction time.

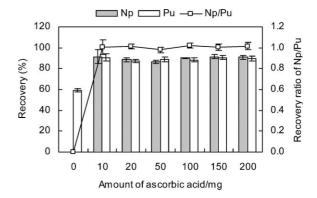


Fig. 7 Effect of the amounts of ascorbic acid on the chemical recovery of Np and Pu.

Removal of Th and U

²³²Th and ²³⁸U are naturally abundant in soil and sediment. Accordingly, large amounts of ²³²Th in the sample solution can interfere with the quantitative determination of ²³⁷Np and Pu isotopes because a huge ²³²Th ICP-MS spectrum increases the background noise in the spectra of the Np and Pu isotopes. Whereas U is easily removed in the sample loading and rinsing step by 5 M HNO₃, Th is not removed by nitric acid medium in the TEVA-Spec. Fortunately, the capacity factor for Th is very low over a wide hydrochloric acid concentration range, whereas Np and Pu have higher capacity factors at high hydrochloric acid concentrations. Thus, 9 M HCl was selected as a rinsing solution for Th removal. In the case of U, although U was almost eliminated in the early two separation stages, the residual amounts of ²³⁸U retained on the TEVA-Spec resin were not small enough to be negligible in the determination of the ²³⁷Np and Pu isotopes at the fg ml⁻¹ levels required in environmental samples. For this reason, the supplementary rinsing step with 1 M HNO₃ was followed by 9 M HCl rinsing. Table 4 shows the percentages of Th and U removed by 9 M HCl and 1 M HNO₃ with eluent volume in the rinsing steps.

Table 4 Removal of Th and U through TEVA-Spec separation steps

Separation steps	Volume/ ml	Th removal (%)	U removal
Sample loading	12	1.1	89.9
Rinsing with 5 M HNO ₃	7	1.5	10.5
Rinsing with 9 M HCl	1.4	93.1	0.03
C	2.8	1.6	0.01
	4.3	0.5	0.01
	5.7	0.2	0.02
Rinsing with 1 M HNO ₃	0.9	2.5	0.64
_	1.7	0.2	0.07
	2.6	0.1	0.02
	3.4	0.1	0.01

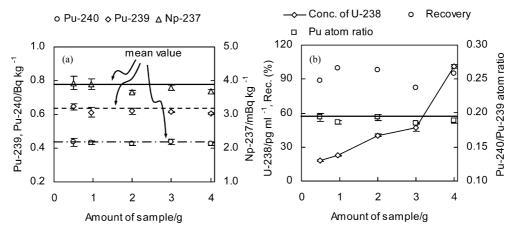


Fig. 8 Variations of precision and accuracy for 237 Np and Pu isotopes (a) and chemical recovery and U concentration (b) with the sample amount. Error bars on individual analysis are $\pm 1\sigma$ of the mean value for 3 replicates.

The decontamination factor of U was 8.8×10^5 , which is similar to that obtained by dual column sequential separation. ¹⁹

Effect of sample amount on the SI system

The concentrations of ²³⁷Np and Pu isotopes in environmental samples ranged widely according to the sample location and matrix. Occasionally, 1 g of soil or sediment was too small to obtain reliable data in terms of accuracy and precision. In such cases, to improve result reliability, the sample size should be increased. However, the separation of large samples on a small TEVA-Spec column could cause unexpected problems, *e.g.*, serious interference and reduced chemical recovery. In order to examine the separation capability of the SI system for large samples, we compared the accuracy, precision, chemical recovery and the ²³⁸U concentration in different IAEA-Soil-6 sample sizes.

According to the result shown in Fig. 8, test precision for the three radionuclides improved slightly on increasing the count number in ICP-MS as well as the concentration of ²³⁸U increased with sample amount. Although, the ²³⁸U concentration in the final cluate was over 100 pg ml⁻¹ when a 4 g sample was used, the interference effect of ²³⁸U on the final concentration of ²³⁷Np and ²³⁹Pu was less than 0.3%. The concentrations of ²³⁹Pu and ²⁴⁰Pu were within a relative error of 10% of from the certified value, ²⁵ and the ²⁴⁰Pu/²³⁹Pu atom value was the same as those obtained by Muramatsu *et al.*²⁶ and Nygren *et al.*²⁷ Furthermore, the concentrations of ²³⁷Np, ²³⁹Pu and ²⁴⁰Pu were similar in all samples and no degradation of chemical recovery was found. As a result, the described scale of the SI system could be used to treat up to 4 g of soil with good accuracy and high chemical recovery.

Re-usability test of TEVA-Spec

The re-usability of the TEVA-Spec in the SI system in a consecutive separation process is of interest, due to its high cost and the need for protracted resin exchange. The extended use of resin can lead to degradation of resin performance with the loss of immobilized stationary organic phase and hydrolysis of extractant and polymer support. Judgements concerning the re-use of resins can be based on the level of chemical recovery and the success of decontamination of residual interference caused by successive use.

Table 5 shows the chemical recoveries and the concentrations of ²³⁷Np and Pu isotopes in nine replicates of NIST-4357, obtained after consecutive separation procedures using the same resin. Blank samples were treated using the same resin after completing the consecutive separation of three NIST replicates. Prior to injecting the next sample, the resin was rinsed with about 5 ml of 0.5 M HCl to minimize the memory effect. The memory effect in TEVA-Spec was calculated in relation to the activity of the blank sample against the spiked activity of the previous replicate sample. Although about 2% of the Pu in the sample was found in the blank solution, the memory effect did not increase gradually in three blanks. In addition, the results for ²³⁷Np and Pu obtained using a blank effect correction were within the certificate interval of NIST.²⁸ Even if the memory effect is not significant, it should be checked using a blank sample whenever TEVA-Spec is used repeatedly.

Validity test and its application to the environmental samples

The reliability of the proposed analytical method was also examined using NIST-4357, which is a valuable standard

Table 5 Re-usability and memory effect of TEVA-Spec in NIST-4357

NIST-4357 replicate	²³⁸ U conc./pg ml ^{-1a}	Recovery (%)	237 Np/mBq kg $^{-1b}$	²³⁹⁺²⁴⁰ Pu/Bq kg ^{-1b}	²⁴⁰ Pu/ ²³⁹ Pu atom ratio
1	1.8	89	10.3	9.05	0.24
2	7.4	94	9.7	9.30	0.24
3	0.2	99	9.2	9.29	0.23
Blank-1	1.2	2.4			
4	10.5	92	8.8	9.99	0.24
5	0.4	97	8.8	9.29	0.24
6	2.0	89	9.0	10.68	0.24
Blank-2	26.3	2.5			
7	7.5	91	8.4	8.88	0.24
8	19.0	96	8.0	10.33	0.25
9	20.9	92	7.8	9.92	0.24
Blank-3	7.4	1.8			
Mean	8.84	2.2	8.9 ± 0.77	9.64 ± 0.62	0.24 ± 0.006

 $[^]a$ The average decontamination factor of U was 8.8 \times 10⁵. b Confidence intervals for 237 Np and $^{239+240}$ Pu by NIST were 4–9 mBq kg $^{-1}$ and 9.3–13.2 Bq kg $^{-1}$, respectively.

Table 6 Com	parison of the a	analytical	Table 6 Comparison of the analytical results to recommended or information	: informational values ava	ilable for standard	reference materials	ıal values available for standard reference materials. The \pm values give one standard deviation	ne standard deviation		
Sample	Replicate no.	Rec. (%)	$^{237}\mathrm{Np/Bq~g^{-1}}$	Rec. or info. value (95% C.I.)	$^{239}\mathrm{Pu/Bq~g}^{-1}$	$^{240}\mathrm{Pu/Bq~g}^{-1}$	$^{239+240}$ Pu/Bq ${ m g}^{-1}$	Rec. or info. value (95% CI)	²⁴⁰ Pu/ ²³⁹ Pu atom ratio	Rec. or info value (95%
IAEA-135	9	98	0.79 ± 0.03	0.85 ± 5.3	121 ± 5.68	92 ± 7.3	212 ± 12.4	213 (205–225.8)	0.21 ± 0.01	0.207 ± 0.0
NIST-4350B	4	94	0.00020 ± 0.00002	0.00018 ± 0.00001	0.36 ± 0.04	0.14 ± 0.01	0.51 ± 0.05	0.508 (0.479-0.528)	0.11 ± 0.01	0.11 ± 0.0
IAEA-307	4	96	0.00078 + 0.00008	Not available	0.45 + 0.02	0.32 + 0.01	0.77 + 0.01	0.72 (0.66–0.79)	0.20 + 0.01	Not availab

fo. % CI) 0.006 0.01 1.01

reference material containing a certified ²³⁷Np level. To verify the applicability of this method to the samples from different matrices, three standard reference materials (SRM) of IAEA and NIST, including a biological sample, were analyzed. As is shown in Table 6, the analytical results of total Pu in IAEA-135 fell within the IAEA certified range,²⁹ and the ²⁴⁰Pu/²³⁹Pu atom ratio agreed well with value reported by the MEL laboratory.^{27,30}

Additionally, the concentrations of ²³⁷Np, ²³⁹Pu and ²⁴⁰Pu agreed within a 10% deviation with that reported by Chen *et al.*¹⁰ For NIST-4350B, the ²³⁷Np and Pu isotope results were similar to those found by Kenna⁸ and Kim *et al.*, ¹⁶ and agreed with the NIST certified ²³⁹⁺²⁴⁰Pu values.³¹

In the case of the biological reference sample, IAEA-307, although the accuracy of the analytical result for ²³⁷Np was unverifiable, because the actual ²³⁷Np level was not known, the ²³⁹⁺²⁴⁰Pu concentration was within the confidence interval of IAEA, ³² and the ²³⁷Np value near identical for 4 replicates. Furthermore, the chemical recoveries for all testing replicates of the three SRMs were sufficiently high and the concentration of U in the final eluate was less than 50 pg ml⁻¹, thus enabling the quantitative determination of ²³⁷Np and Pu isotopes by ICP-SF-MS in combination with the SI system.

Conclusions

We have described a new simultaneous analytical method for ²³⁷Np and Pu isotopes in various environmental samples by ICP-SF-MS combined with the SI system. This method is very fast and convenient by virtue of straightforward sample pretreatment and an automated separation procedure. Thus, this method is compatible with the requirements of an emergency situation demanding rapid analysis of ²³⁷Np and Pu isotopes, and is able to analyze small sample volumes. Moreover, it is an economic analytical tool as only a small volume of resin is packed into the micro-column, because of its sustained separating ability in real situations. This method was successfully applied to soil, sediment and biological samples, and showed high chemical recovery, a satisfactory accuracy, and a low level of interference from ²³⁸U.

However, further study for the rapid simultaneous determination of ²³⁷Np and Pu isotopes in water samples is required, especially in sea-water, as the present separation scheme is unsuitable for water samples.

Acknowledgements

We wish to acknowledge the financial support of the Ministry of Science and Technology (MOST). Also, we give special thanks to the Innovative Technology Center for Radiation Safety (ITRS), Hanyang University, Seoul, Korea for supporting this work.

References

- C. K. Kim, A. Takaku, M. Yamamoto, H. Kawamura, K. Shiraishi, Y. Igarashi, S. Igarashi, H. Takayama and N. Ikeda, J. Radioanal. Nucl. Chem., 1989, 132, 131.
- 2 J. B. Truscott, P. Jones, B. E. Fairman and E. H. Evans, *Anal. Chim. Acta*, 2001, 433, 245.
- 3 J. B. Truscott, P. Jones, B. E. Fairman and E. H. Evans, J. Chromatogr., A, 2001, 928, 91.
- 4 B. Egorov, M. J. O'Hara, O. T. Farmer III and J. W. Grate, Analyst, 2001, 126, 1594.
- L. W. Cooper, J. M. Kelly, L. A. Bond, K. A. Orlandini and J. M. Grebmeier, *Mar. Chem.*, 2000, 69, 253.
- 6 M. J. Keith-Roach, J. P. Day, L. K. Fifield and F. R. Livens, Analyst, 2001, 126, 58.
- 7 J. M. Barrero Moreno, M. Betti and J. I. Garcia Alonso, J. Anal. At. Spectrom., 1997, 12, 355.
- 8 T. C. Kenna, J. Anal. At. Spectrom., 2002, 17, 1471.

- T. M. Beasley, J. M. Kelly, T. C. Maiti and L. A. Bond, J. Environ. Radioact., 1988, 38, 133.
- 10 Q. Chen, H. Dahlgaard, S. P. Nielsen and A. Aarkrog, J. Radioanal. Nucl. Chem., 2002, 253, 451.
- 11 J. La Rosa, J. Gastaud, S.-H. Lee, I. Levy, E. Wyse and P. P. Povinec, Recent Developments in Analysis of Transuranics (Np, Pu, Am) in Seawater, presented at the International Conference on Radioactivity in the Environment, Monaco, 2002.
- 12 M. Toribio, J. F. García, G. Rauret, R. Pilviö and M. Bickel, *Anal. Chim. Acta*, 2001, **447**, 179.
- 13 G. Kim, W. C. Burnett and E. P. Horwitz, *Anal. Chem.*, 2000, 72, 4882
- 14 Eichrom Industries, Extraction Chromatographic Material for Rapid Separation of Tetravalent Actinides, Information Sheet on TEVA-Spec, Eichrom Industries, Darien, IL, 1996.
- 15 R. Chiappini, J.-M. Taillade and S. Brébion, J. Anal. At. Spectrom., 1999, 14, 933.
- 16 C. S. Kim, C. K. Kim, J. I. Lee and K. J. Lee, J. Anal. At. Spectrom., 2000, 15, 247.
- 17 E. Wyse, S. H. Lee, J. La Rosa, P. Povince and S. J. de Mora, *J. Anal. At. Spectrom.*, 2001, **16**, 1107.
- 18 J. W. Grate, O. B. Egorov and S. K. Fiskum, *Analyst*, 1999, **124**, 1143.
- L. Perna, M. Betti, J. M. Barrero Moreno and R. Fuoco, J. Anal. At. Spectrom., 2001, 16, 26.
- V. D. Jones, Actinide Mass Bias Empirical Calibration for ICP-MS, presented at the 2000 Winter Conference on Plasma Spectrochemistry (FP26), Fort Lauderdale, Florida, USA, 2000.
- 21 C. S. Kim, C. K. Kim and K. J. Lee, Anal. Chem., 2002, 74, 3824.

- E. P. Horwitz, M. L. Dietz, R. Chiarizia, H. Diamond,
 S. L. Maxwell and M. R. Nelson, *Anal. Chim. Acta*, 1995, 310, 63.
- 23 J. J. Katz and G. T. Seaborg, *The Chemistry of the Actinide Elements*, Methuen, London, 1957.
- 24 B. H. Jianyu, R. Odoj, T. Baosheng and E. Merz, *Radiochim. Acta*, 1998, **83**, 183.
- 25 IAEA, Report on the Intercomparison Run IAEA-Soil-6, IAEA/ RL/111, IAEA, Vienna, 1984.
- 26 Y. Muramatsu, A. Uchida, K. Tagami, S. Yoshida and T. Fujikawa, J. Anal. At. Spectrom., 1999, 14, 859.
- U. Nygren, I. Rodushkin, C. Nilsson and D. C. Baxter, J. Anal. At. Spectrom., 2003, 18, 1426.
- 28 K. G. W. Inn, Z. Lin, Z. Wu, C. McMahon, J. J. Filliben, P. Krey, M. Feiner, C. K. Liu, R. Hollowway, J. Harvey, I. L. Larsen, T. Beasley, C. A. Huh, S. Morton, D. McCurdy, P. Germain, J. Handl, M. Yamamoto, B. Warren, T. H. Bates, A. Holms, B. R. Harvey, D. S. Popplewell, M. J. Woods, S. Jerome, K. J. Odell, P. Young and I. Croudace, J. Radioanal. Nucl. Chem., 2001, 248, 227.
- 29 IAEA, Report on the Intercomparison Run IAEA-135, IAEA/AL/ 063, IAEA, Vienna, 1993.
- 30 S. H. Lee, J. Gastaud, J. J. La Rosa, L. Liong, W. Kwong, P. P. Povince, E. Wyse, L. K. Fifield, P. A. Hausladen, L. M. Di Tada and G. M. Santos, J. Radioanal. Nucl. Chem., 2001, 248, 757.
- 31 D. D. Hoppers, "National Bureau of Standards Certificate StandardReference Material 4350B", Tech. Rep. No. SRM-4350B, National Institute of Standards and Technology, Gaithersburg, MD, USA, 1981.
- 32 IAEA, Report on the Intercomparison Run IAEA-307, IAEA/AL/ 041, IAEA, Vienna, 1989.