Consumer perceptions of novel fruit and familiar fruit: a repertory grid application

Sara R Jaeger,* Karen L Rossiter and Karen Lau
The Horticulture and Food Research Institute of New Zealand Ltd, Mt Albert Research Centre, Auckland, New Zealand

Abstract: To explore how consumers perceive novel and familiar fruit, repertory grid interviews were carried out with 60 New Zealand women. Participants described their perceptions of nine fruit varying in familiarity. The data analysis established a two-dimensional stimuli space that separated samples with respect to familiarity and the amount of preparation required. Fruit that was familiar was characterised as being well liked, easily available in shops and by a number of different use situations. The primary association with novel fruit was that it was expensive. The participants could not readily think of use situations for fruit they were unfamiliar with. Consumers were separated into groups according to the trait of food neophobia, which pertains to an individual’s stable propensity to approach or avoid novel foods. When comparing the most neophobic (n = 14; avoids novel foods) and most neophilic (n = 14; approaches novel foods), individuals perceptual differences were uncovered pertaining to which of the fruit were considered novel and to the suitability of some usage situations (cooking and for children). This finding contributed to the growing evidence of the relationship between food neophobia and consumers’ everyday food-related behaviour.

Keywords: perceived novelty; use situations; Generalised Procrustes Analysis; curved box plot

INTRODUCTION

Many new types of fruit are being released and promoted in the marketplace. For example the New Zealand fruit industry, which successfully established green-fleshed kiwifruit in the marketplace in the 1970s,1 has broadened its product range with the release of a yellow-flesh kiwifruit marketed as ZESPRI® Gold in the late 1990s,2 and is currently diversifying into grape-sized baby kiwifruit, which have edible skins.3 The proliferation of tropical and exotic fruits in the marketplace4 represents a similar trend, but on a much larger scale. We note in brief one consequence of this increasing availability of other fruits, namely a decline in consumption of commodity fruits such as apple, banana and citrus.5 While commercial interests, government and international agricultural policies, and scientific innovation continue to drive the development of new crops,6,8 a knowledge gap exists with respect to how consumers perceive novel fruits. We contribute to overcoming this paucity by exploring consumers’ perceptions of novel and familiar fruits.

In the same way that consumers have diverse taste preferences for fruit7–9 diverse food-related behaviours should be anticipated to impact on consumer perceptions of novel fruits. One aspect of behaviour that has attracted interest in the consumer-science literature is the trait of food neophobia, which pertains to an individual’s stable propensity to approach or avoid novel foods.10 It spans a continuum along which people can be located according to their tendency towards initially rejecting or unwillingness to eat novel foods. Using Pliner and Hobden’s10 Food Neophobia Scale, several authors have demonstrated effects of food neophobia relative to different aspects of food-related behaviour including sampling, sensory expectations and acceptance.11–17 It is worth noting that the findings pertaining to sensory acceptance are not equivocal. In some cases results have been reported that mirror those pertaining to expected liking. For example, the work by Tuorila et al.,12 Arvola et al.17 and Pliner et al.18 demonstrated how individuals high in food neophobia have lower expectations for unfamiliar than familiar products. However, there have also been a number of reports of no differences in acceptance.8,10,15,19,20

Research on consumer perceptions of fruit has involved a wide range of methodologies.21 The Repertory Grid Technique (RGT) is a powerful tool for studying human perceptions that is also suitable for comparing groups of consumers exhibiting lower and higher levels of food neophobia. The RGT was developed by Kelly to be used in conjunction with his Personal Construct Theory.22 Today, Kelly’s seminal work provides the foundation for the theoretical
framework of Personal Construct Psychology (PCP), which is a theory of individual and group psychological and social processes. As a clinical psychologist, Kelly’s job was to ‘get to know people, classify them, get to understand their problems and help them understand themselves better’ (reference 23, p 3). To do so effectively and efficiently, Kelly was concerned with finding a method of inquiry to enable a subject to present his own constructing of aspects of his world in a form that could be understood and communicated.\(^{24}\)

The value of the RGT is that it provides a means for investigating a person’s conceptual structures relevant to interpersonal relationships by having them classify a set of people significant to them in terms of elicited personal constructs. In a recent contribution,\(^{25}\) the usefulness of the RGT in consumer research when used as an interpretative research framework for exploring consumer behaviour experience was reviewed. The interpretative paradigm, which is becoming more dominating in contemporary consumer research, rejects the view that a consumer is a ‘passive organism simply responding to marketing stimuli’ (reference 25, p 817). Rather, consumers’ understanding of the world is seen as a result of an active and constructive process. This outlook corresponds with Personal Construct Psychology (PCP), which posits that a person’s understanding of the world is achieved through the process of contrast and similarity. As such, the RGT is a method of collecting and encoding contrasts for further study.

Five separate steps make up the process of conducting RGT research: (1) element selection, (2) construct elicitation, (3) grid completion (element comparison), (4) data analysis and (5) interpretation of results. In consumer research, RGT tends to be undertaken with the aim of uncovering the factors governing perceptions, attitudes and behaviour in the external environment; the elements usually take the form of products and services.\(^{26,27}\) During the stage of construct elicitation, participants are presented with combinations of elements and asked to contrast these in a manner whereby bipolar constructs are generated. Several different approaches to the presentation of elements exist and research aimed at identifying the most effective and efficient way of doing so is ongoing in the academic community.\(^{28,29}\) The triadic presentation format is most common. In this mode, participants are presented with three elements and asked to think of ways in which two of the elements presented are like each other and different from the third. It is possible to guide the interviewee into producing constructs that relate specifically to a research question of interest. In practice this is achieved by adding the qualifying purpose to the end of the construct elicitation question. This nearly always takes the form ‘in terms of … ’ or ‘from the point of view of … ’. For example, if the study focused on texture perception of fruit and vegetables, texture specific constructs could be elicited by asking participants to describe similarities and differences between the elements with respect to texture.

When an interviewee has completed the construct elicitation task, the next step is the process of grid completion. This step is the collection of data that enable an examination of how the constructs are used. That is, how participants associate constructs with the research elements. The manner in which this happens in practice is that each construct is viewed as a scale rather than a pair of phrases. Participants then rate each element on each of their personal constructs. Consider a triad of elements, for example, a watermelon, a lime fruit and a lemon. Imagine that a construct relating to fruit size (small vs large) was elicited. The participant who generated this construct would then rate each of the three fruits with respect to size.

In the present study, consumers were presented with a series of triads of images of nine different fruits, namely Kiwifruit, Nashi, Grapes, Melon, Pawpaw, Fresh Figs, Pomello, Kiwano and Arguta/Babykiwi. Each set of three images was used to elicit comments during one-on-one interviews with consumers as part of a RGT protocol. A powerful multivariate statistical approach called Generalised Procrustes Analysis was used to establish a consensus configuration summarising the similarities and differences in perceptions of this mixture of familiar and novel fruits.

METHOD

Fruit samples

The nine fruit stimuli included in the RGT (Fig 1) were: Arguta (a grape-sized green-fleshed kiwifruit sold as Babykiwi), Fresh Figs, Grapes, Kiwano (or horned melon), Kiwifruit (‘Hayward’ cultivar), Melon (honeydew variety), Nashi (or apple pear), Pawpaw (or papaya) and Pomello (a thickly skinned large citrus fruit).

Pilot testing in the form of a focus group interview was conducted in order to aid selection of these stimuli. On the basis of consumer responses and availability the fruit stimuli were chosen among the 17 different and commercially available fruits included in the focus group (Arguta/Babykiwi, Pomello, Kiwano, Figs, Mango, Honeydew Melon, Pawpaw, Nashi, Pear, Passionfruit, Apple, Banana, Orange, Grapes, Watermelon, Feijoa and Kiwifruit). Specifically, during the focus group, familiarity ratings were collected on a seven-point scale (1 = ‘extremely unfamiliar’; 7 = ‘extremely familiar’) and a grouping exercise, which asked individuals to group fruit they perceived as similar, was undertaken. Individuals were also asked to indicate which fruit they perceived to be novel. Fifteen people from a database of approximately 550 Auckland residents completed the 10-item Food Neophobia Scale\(^{10}\) over the phone. Among these, the seven people with the most extreme scores were invited to participate in the focus group(36–49 years old, four female).
During the repertory grid interviews, photographic images of the fruit samples were used for construct elicitation and rating of constructs. The photographs were 7" × 5" high-quality colour images recorded digitally against a light grey background from an angled position above the fruit. This procedure, which is similar to that used in other studies, helped to maintain the natural shadows cast by the fruit and kept the photograph looking realistic. The name of the fruit was the only textual information provided on the photographic images. In addition, a platter with samples of the fruit included in the study was provided during the repertory grid interviews. Individuals were free to sample the fruit.

Repertory grid interviews

Because of the skewed gender distribution among consumers registered on the database, it was decided to include only women in the study. A total of 90 consumers (all Caucasian New Zealanders) from the database of Auckland residents was contacted and responses to the Food Neophobia Scale were collected over the phone. Following a triadic split, the 30 individuals with the highest and lowest scores respectively were recontacted and asked to participate in the study. For the 60 individuals (25–55 years old), food neophobia scores were 13–42 (theoretical range: 10–70). As it was not meaningful to classify any individuals as highly neophobic, two groups were considered as representing moderate food neophobia individuals (n = 30; range: 27–42, mean = 33.5) and low food neophobia individuals (n = 30, range: 13–25; mean = 18.9). Two native female interviewers, who had received training in the methodology, were employed. To minimise unwanted bias, the allocation of participants with respect to food neophobia classification and other parameters relating to the execution of the interviews (eg time of day, room allocation, weekday and participant’s age) was randomised between the two interviewers. The duration of individual interviews was 40–90 min (mean = 52 min; SD = 10 min) with individuals generating 7–36 constructs (mean = 14, SD = 4.5).

The repertory grid interviews, which were conducted in one session, fell into three parts. First, individuals were introduced to the objective of the test and the fruit samples were presented. Individuals’ attention was drawn to the fruit platter and they were informed that the fruit was for them to try and that they were welcome to help themselves. Two examples illustrating the concept of construct elicitation using a triadic sample presentation were given. During construct elicitation, each participant was presented with a total of six triads. The triads were composed so that each of the nine fruit samples was presented exactly twice. The presentation order of triads followed an incomplete Williams Latin Square design. Following a short break, individuals provided ratings for each sample for each of the constructs they had previously generated. The presentation of samples in the rating exercise followed an incomplete Williams Latin Square design. Ratings were collected on 9-point box scales using the anchors provided by individuals. As a general rule, the low anchor (1) was assigned to the

Figure 1. Fruit stimuli used in repertory grid interviews: (a) Arguta/Babykiwi, (b) Fresh Figs, (c) Grapes, (d) Kiwano, (e) Kiwifruit, (f) Melon, (g) Nashi, (h) Pawpaw and (i) Pomello.
negative, unfavourable or undesirable pole; the high anchor (9) to the positive, favourable or desirable pole.

Statistical analysis
Responses from the repertory grid interviews were analysed using Generalized Procrustes Analysis (GPA), a procedure that allows data from assessors using individual vocabularies to characterise a common set of samples to be brought together. Briefly, this powerful multivariate procedure consists of three steps: translation, rotation/reflection and scaling. Each assessor’s configuration is translated to a common centroid, the origin, adjusting for assessors using different parts of the scale. Rotation and reflection corrects for assessors using different attributes (ie constructs) to describe the same samples. Furthermore, each assessor’s configuration is scaled to unit variance, matching the configuration size by shrinking and stretching, to adjust for assessors using different ranges of the rating scale. To establish a reduced dimensionality consensus configuration, the transformed data are submitted to principal components analysis. The procedure is commonly used for analysis of free-choice profiling data in the sensory community. Further information on GPA and interpretation of results can be found, for example, in Dijksterhuis, Dijksterhuis and Gower and McEwan and Hallet.

To aid interpretation of GPA results a consumer vocabulary was developed and projected onto the consensus configuration in the form of curved box plots. The vocabulary was developed by grouping synonymous attributes (ie construct wordings) under common category headings. This grouping exercise, which was performed by a judge who had not undertaken the repertory grid interviews, was revised by one judge who had conducted half of the interviews. Disagreements on categorisation of constructs were resolved by discussion (inter-judge agreement was 92%). In order to learn which attributes individuals associated with which stimuli, all attributes were correlated with the consensus configuration. This projection is mathematically similar to that performed in extended internal preference mapping. To focus attention on the attributes which individuals used reliably, only attributes for which the square root of the summed correlation between an attribute and the two GPA dimensions of interest was greater than 0.5 were interpreted. Variation in the use of attributes within a category was examined using curved box plots. While mathematically similar to standard box-and-whiskers plots, curved box plots graphically illustrate the angular distribution of attributes used by more than one consumer following the projection of attributes onto the GPA consensus space. The box itself accounts for the middle 50% of the angular attribute positions and the line inside the box represents the direction of the median attribute vector. Lines or whiskers extend up to 1.5 times the inter-quartile range, or to the leftmost or rightmost attribute vector. All analyses were performed using SAS 8.2 (SAS Institute Inc, Cary, NC, USA).

RESULTS AND DISCUSSION
Consumer perceptions
Generalized Procrustes Analysis of data from all 60 individuals resulted in a two-dimensional consensus configuration accounting for 60.5% of the total variance, of which 39.1% was accounted for by the first dimension and 21.4% by the second. In these spaces (Fig 2a and b) the first dimension was spanned between Grapes with a high positive score and Kiwano and Pomello with high negative scores. On the second dimension, Pawpaw and Melon had high positive scores; Arguta/Babykiwi and Fresh Figs had the highest negative scores. Examination of the corresponding assessor plot (not shown) revealed that no assessors were outlying or significantly different from the group.

The consumers’ perceptions of the fruits were explored by examining the attribute curved box plots relative to the GPA consensus configuration. A familiarity continuum was spanned between ‘novel’ and ‘not try’ (ie have not tried this fruit) and the concepts of ‘common’, ‘liking’ and ‘would buy’ (Fig 2a). Besides identifying Kiwano and Pomello as the two most novel fruits, it was also evident that the participants were unlikely to have tried these fruits. Considering the choice of product stimuli it was not unexpected that familiarity be key in driving product separation. It was also not surprising to find ‘liking’ and ‘would buy’ positioned close in the consensus space. In Fig 2a, a second continuum pertaining to ease of preparation was spanned between the concepts of ‘easy to use’ and ‘no preparation required’, which were contrasted against those pertaining to ‘preparation’, ‘needs cutting/slicing’ and ‘eat using a spoon’. Individuals who used the construct ‘would eat the seeds’ (not shown) did so in the sense of describing the eating process rather than making associations relative to the preparation required. The box plot for ‘eat seeds’ was positioned by Fresh Figs and spatially separated from the ‘no preparation’ and ‘easy to use’ box plots, which were positioned by Nashi and Grapes.

Individuals described a number of usage situations for those fruits they considered common and that they liked. As shown in Fig 2b, these included ‘dessert’ (including in fruit salad, on a fruit platter, in a hot dessert), ‘morning’ (ie eat as a breakfast fruit), ‘with cheese’ (including on a cheese platter or savoury board), ‘cooking’ (ie versatility in cooking including baking, marinating meat, jam/preserves, responds well to heat), ‘snack’ (including finger food, portable, for afternoon tea, eat as is), ‘lunch’ (including for work and children’s lunch boxes) and ‘children’ (including kid friendly, children like, kids can eat without help). Other applications included ‘juicing’ (including milk shake, fruit smoothy, make wine with), ‘guests’ (ie used when entertaining), ‘in green salad’, and ‘for...
decorating with' (e.g., garnish, on pavlova, display item, dessert topping). However, as the curved box plots for these four additional applications were positioned together with the applications shown in Fig 2b and are not shown here due to space constraints.

During construct elicitation no specific guidelines as to which type of attributes (e.g., sensory or usage properties) the investigators were most interested in were put forward. Thus, it was interesting to find that, without prompting, less than 50% of individuals used attributes relating to the appearance, taste or texture of the fruits. Rather, as described above, consumers’ product characterisation focused on usage situations (e.g., when entertaining guests, in the morning) and applications (e.g., as decoration, for juicing). Although an in-depth exploration of the consumers’ sensory vocabulary is beyond the objectives of this research, the richness of elicited attributes is noted. For example, relating to texture attributes such as firm, dense, soft, watery, juicy, smooth, crisp, moisture and soft skin were elicited. Note that while it is also possible to derive curved box plots for these sensory attributes these are not shown because the study’s focus was on consumer perception, as opposed to sensory specific perception. Please refer to Andani et al.35 for an example of the use of curved box plots with sensory attributes.

The above consumer-based construct of novel and familiar fruits perhaps holds some surprises for horticulturalists. The lack of an overwhelming dominance of sensory characteristics (e.g., quality, taste and flavour) is markedly different from results from consumer studies that focus on single products such as apples.21 The current study suggests that usage situations and convenience issues play a critical role in choice between different types of fruit. All the fruit used in this study were obtained from supermarkets with the exception of Babykiwi, which were sourced from pre-commercial trials. Kiwifruit and Nashi represent major New Zealand fruit industries; Pawpaw, Grapes and Melon regularly feature in supermarkets and are grown by smaller fruit-growing companies or imported (see HortResearch41 for production statistics). Kiwano, Pomello and Fresh Figs represent fruit that are sold infrequently and in small volumes in New Zealand. Only Babykiwi represent a crop that is new to international/domestic trade.1 Despite being the newest product, Babykiwi was perceived by consumers as only slightly less common than Nashi/Melon/Pawpaw (a novel-common axis can be inferred on Fig 2a). Moreover, it was perceived as more common than Fresh Figs, which are ancient and well-recognised fruit in many cultures, as well as widely available as dried or processed products. This suggests that the level of perceived novelty is not easily predicted. While availability and recognition play a part in defining perceptions of novelty, some fruit may tap into pre-existing product-based frameworks. We speculate that Babykiwi tapped into such a framework for New Zealand consumers.

Comparison of individuals varying in food neophobia

Although a number of analysis strategies was utilised in the comparison of the 30 individuals low in food neophobia and the 30 individuals moderate in food neophobia, no major perceptual differences were revealed. No difference between moderate and low food neophobia individuals for interview duration (p = 0.66) or the number of constructs elicited (p = 0.91) was established. In the global GPA (N = 60), no segmentation pattern among individuals with respect to their food neophobia classification was observed in the Procrustes assessor configuration (not shown). In turn, this implied that
the GPA stimuli consensus spaces derived separately for low and moderate food neophobia individuals would not differ noticeably. As expected, when GPA was performed separately for the two groups, two-dimensional consensus configurations for which the percentage variances explained were comparable were established [moderate food neophobia individuals only (n = 30): dimension 1 = 40.5%, dimension 2 = 22.3%; low food neophobia individuals only (n = 30): dimension 1 = 38.8%, dimension 2 = 20.5%]. The notion that low food neophobia individuals’ cognitions be more developed (ie complex or extensive) relative to moderate food neophobia individuals and reflected in a higher-order GPA consensus configuration (eg three rather than two dimensions) was not supported.

The possibility that the lack of perceptual differences between individuals varying in food neophobia was an outcome of the limited variation in food neophobia scores between the two groups was explored by repeating the GPA and box plot projections with a subset of 28 individuals (chosen among the 60) with the most extreme food neophobia scores [most neophilic individuals (n = 14, range: 13–18) and most neophobic individuals (n = 14, range: 34–42)]. In accord with the above findings, samples in both two-dimensional GPA consensus configurations [most neophilic individuals (dimension 1 = 38.8%, dimension 2 = 18.2%); most neophobic individuals (dimension 1 = 45.4%, dimension 2 = 21.4%)] were separated along the familiarity continuum and preparation continuum previously established. In the consensus spaces (Fig 3) the relative positions of fruit samples were comparable for all fruits but Fresh Figs. While among the most neophobic individuals this sample was positioned relatively close to Kiwano and Pomello, it was positioned between Kiwifruit, Nashi and Arguta/Babykiwi in the GPA space based on the most neophilic individuals. This indicated that Fresh Figs were perceived as more novel by the most neophobic than most neophilic individuals.

The box plots for the most neophilic and most neophobic individuals relative to the global GPA solution are shown in Fig 4a and b, respectively. Contrary to the tightness of the box plot for ‘novel’ derived from the most neophilic individuals, that from the most neophobic individuals is somewhat wider with whiskers spanning from Kiwano to Fresh Figs. Moreover, while among the most neophobic individuals the concepts of ‘novel’ and ‘exotic’ were clearly distinct, there was some evidence of overlap among the most neophobic individuals. With respect to perceptions of price (ie ‘costly’), it appears that the most neophobic individuals consider Pawpaw and Melon, as well as Kiwano and Pomello, to be expensive. In comparison, the most neophilic individuals consider the fruit they perceive as novel to be more expensive than that perceived as exotic and more familiar. With regard to usage situations (seen in the right-hand sides of Fig 4a and b), the differences in visual appearances of box plots derived from the most neophobic and most neophilic individuals suggest that the latter envisaged using different familiar fruits in a broad range of applications. Notice that the construct pertaining to versatility in cooking (ie ‘cooking’) appears on the plot for the most neophilic (Fig 4a) but not the most neophobic individuals (Fig 4b). Contrary to the 11 (of 14) most neophilic individuals who described uses such as tenderising meat, use with fish/meat dishes, only two of the most neophobic individuals used this construct.

The visual appearance of the box plots for ‘novel’ and ‘exotic’ in Figs 2 and 4 are in agreement with the notion that exotic be a somewhat broader concept than novel.\(^a\) The box plots for these two constructs

\(^a\) The Oxford Advanced Learners dictionary\(^a\) (p 420) defines exotic as both unusual and/or introduced from another country.

![Figure 3. Two-dimensional GPA consensus configuration from (a) the 14 most neophilic individuals only and (b) the 14 most neophobic individuals only.](image-url)
Figure 4. Two-dimensional global GPA consensus configuration with novelty and use situation box plot projections. (a) only the 14 most neophilic individuals shown and (b) only the 14 most neophobic individuals shown.

were relatively tight and spatially distinct in the case of the most neophilic individuals, and suggested that this group of consumers had greater familiarity with exotic produce like Pawpaw and, thus, could cognitively distinguish this concept from novelty. In the case of the most neophobic individuals, the spatial overlap of the two box plots pointed to less familiarity with exotic produce, which was hence also considered as novel.

At a general level, the box plots pertaining to use situations offered some indirect insight into food-related behaviour. This suggested that the most neophobic individuals perceived fewer fruits to be suitable for a particular application than the most neophilic individuals. For example, the most neophobic individuals did not think that Kiwifruit was suitable to tenderise meat with or that it was suitable to accompany a fish dish or that it could be used to make wine. Tentatively, the relative positions of the box plots derived from the most neophilic and most neophobic individuals also pointed to differences in the factors driving food choice. Among the most neophobic individuals (Fig 4b) there was a spatial overlap between the constructs of ‘easy to use’ (ie convenience) with ‘for lunch’, but not ‘for children’. In comparison, these three constructs appeared less separated among the most neophilic individuals (Fig 4a). Thus, it is a possibility that choice of fruit for children to eat is driven by familiarity among the most neophobic individuals. Conversely, the position of the ‘children’ box plot among the most neophilic individuals suggested that this group of consumers consider ‘easy to use’ to be more important than familiarity for determining suitability of fruit use with children.

A possible explanation for this result is that the relative importance of factors driving food choice differs between individuals varying in trait food neophobia. Certainly, the findings by Koivisto Hursti and Sjödén[42] that the degree of parent (particularly mother) food neophobia is related to the number of uncommon foods served in the household, suggests differences in the importance of the key factors driving food choice. The 36-item Food Choice Questionnaire[43] (FCQ) offers one approach for assessing the relative importance of health, mood, convenience, sensory appeal, natural content, price, familiarity and ethical concern. Using this instrument Steptoe and Wardle[44] and Crossley and Khan[45] reported that people of lower educational attainment placed greater emphasis on price, familiarity, mood and sensory appeal than did those who were better educated. Prescott et al[46] uncovered cross-cultural differences in motives for food choice. The relative importance of the nine FCQ factors was similar among Taiwanese and Malaysian consumers but different from those of New Zealand consumers. Overall, the present findings revealed some perceptual differences between individuals varying in trait food neophobia. Indirectly they also suggest that some behavioural differences exist. Thus, the study contributes to the accumulating evidence in the literature that trait food neophobia has an impact on food-related behaviour.[19,20]

CONCLUSIONS

Repertory grid interviews were conducted with 60 New Zealand women to uncover consumer perceptions of novel and familiar fruit. Participants’ perceptions of familiar fruit encompassed sensory acceptance, market accessibility and a variety of use situations. Perceptions of novel fruit were notably less developed and many participants were unable to think of use situations. The curved box plots were useful in visualising the vocabulary participants used to describe their product perceptions. They also allowed a comparison of perceptions among individuals varying in trait food
neophobia. Despite a limited range in food neophobia scores among the 60 participants, a comparison of the 14 most neophobic and the 14 most neophilic individuals revealed differences relative to the degree of novelty associated with Fresh Figs, as well as suitability of a number of use situations. There was some indication that the importance of factors governing food choice differed between these two groups.

ACKNOWLEDGEMENTS
We would like to thank colleagues at HortResearch for their help during data collection, for editorial assistance and for helpful comments on an earlier version of this manuscript. This research was funded by the New Zealand Foundation for Research Science and Technology. Mr Ian Wakeling is acknowledged for providing the code to perform Generalized Procrustes Analysis.

REFERENCES

