

Determination of arginine in dietary supplements

Michelle E Gange, Paul S Francis,* Jason W Costin, Neil W Barnett and Simon W Lewis

School of Biological and Chemical Sciences, Deakin University, Geelong, Victoria 3217, Australia

Abstract: We present a rapid and sensitive flow injection method for the determination of arginine in dietary supplements. Detection was based on the chemiluminescence reaction of arginine with alkaline hypobromite. The response is proportional to analyte concentration over the calibration range, from 2.5×10^{-6} to 1×10^{-4} M, and a relative standard deviation of 1% was calculated (1×10^{-5} M, $n = 12$). Samples required only aqueous dilution prior to analysis, and over 100 samples could be analysed per hour, which is superior to that achieved with conventional colorimetric and enzymatic procedures. The results obtained with the flow injection methodology were concordant with those achieved using high-performance liquid chromatography employing pre-column derivatisation and fluorescence detection.

© 2005 Society of Chemical Industry

Keywords: chemiluminescence; flow injection analysis; arginine; sports drinks; ergogenic aids

INTRODUCTION

L-Arginine is classified as a non-essential amino acid for humans, but it is considered essential for normal development of many other mammals until adulthood.¹ The biochemistry of this amino acid is complex and involves many key metabolic pathways.^{1–3} L-Arginine is converted to L-ornithine and urea by arginase and is a precursor for creatine, which plays a crucial role in the energy metabolism of muscle, nerve and testis. It is also used in the synthesis of nitric oxide, which is involved in vascular relaxation. Arginine can act as a neurotransmitter and mediator of immune response and contributes to the cytotoxic activity of macrophages against tumour cells, bacteria and protozoa.^{1–3}

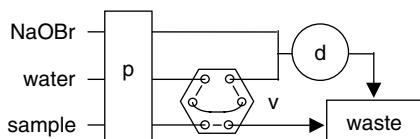
As a pure powder or a component of free amino acid mixtures, L-arginine is marketed to athletes as a dietary supplement to improve cellular energy and muscle growth. For example, the Musashi™ range includes Arginine, a pure free-form amino acid, and mixed powders such as Chen, Energy Formula, Kuan and Muscle Gain Formula, which contain approximately 750, 350, 110 and 80 mg g^{–1} L-arginine respectively. The role of L-arginine in the production of nitric oxide and efficient blood flow has led to its incorporation in preparations that are designed to improve sexual performance.

Amino acids have been determined with a variety of techniques, including high-performance liquid chromatography (HPLC), ion exchange liquid chromatography, gas chromatography, thin

layer chromatography, capillary electrophoresis, mass spectrometry and nuclear magnetic resonance spectroscopy.^{4,5} In the case of liquid chromatography, which has been used extensively for this task, pre- or post-column derivatisation with ninhydrin, fluorescamine, o-phthaldialdehyde, dansyl chloride, dabsyl chloride, phenyl isothiocyanate or 9-fluorenylmethyl chloroformate is often employed to achieve the desired selectivity and sensitivity. Post-column or post-capillary chemiluminescence detection has been demonstrated with reagents such as luminol,^{6–10} tris(2, 2'-bipyridine)ruthenium(III),¹¹ lucigenin¹² and peroxyoxalates.^{13,14} In addition to the inherent high sensitivity of chemiluminescence detection, most of these approaches do not require pre-column derivatisation of the amino acids. Nevertheless, these detection systems have not been widely adopted, presumably owing to the plethora of readily available methods utilising UV-vis absorbance or fluorescence.

There are also numerous specific tests for individual amino acids. Most colorimetric approaches to the selective determination of arginine are based on the Sakaguchi reaction, involving hypohalites and 1-naphthol or 8-hydroxyquinoline,^{15–17} but other reagents have also been employed for the determination of free or bound arginine, including butane-2,3-dione monoxime,¹⁸ 4-hydroxy-3-nitrophenylglyoxal,¹⁹ *p*-nitrophenylglyoxal²⁰ and syringaldehyde.²¹ Benzoin²² and 9,10-phenanthrenequinone²³ have been used as fluorescent reagents for

* Correspondence to: Paul S Francis, School of Biological and Chemical Sciences, Deakin University, Geelong, Victoria 3217, Australia
E-mail: psf@deakin.edu.au


(Received 22 March 2004; revised version received 22 July 2004; accepted 8 November 2004)
Published online 1 February 2005

compounds with guanidine functionality, including arginine. Other approaches include second-derivative spectrophotometry²⁴ and selective enzymatic conversion of the analyte.^{25,26}

Three related chemiluminescence reactions that exhibit some selectivity for arginine have been reported. In alkaline solution a weak chemiluminescence accompanies the reaction of *N*-bromosuccinimide with four amino acids (serine, threonine, glycine and arginine); this emission was sensitised with fluorescein.²⁷ Glycine and arginine have been determined in pharmaceutical formulations by oxidation with *N*-bromosuccinimide after reaction with the carbonyl functional groups of humic acid,²⁸ but this method is not sufficiently selective to determine arginine in the presence of other amino acids. We have recently shown that arginine is the only naturally occurring amino acid that produces an intense emission when oxidised with hypobromite.²⁹ The emission spectrum from this reaction is broadly distributed, with a maximum around 600–700 nm. In this paper we further explore this reaction and apply it to the determination of arginine in nutritional supplements that are marketed as ergogenic aids.

MATERIALS AND METHODS

A conventional flow injection analysis manifold was assembled (Fig 1). A peristaltic pump (Gilson Minipuls 3, John Morris Scientific, Balwyn, Victoria, Australia) with bridged PVC tubing (Protech Group, Coolum Beach, Queensland, Australia) was used to propel solutions through 0.8 mm id PTFE tubing (Protech). Solution lines were combined with a T-piece, samples were injected into the carrier stream with an automated six-port valve (Valco Instruments, Schenkon, Switzerland), and the light emitted from the reacting mixture was detected with a custom-built flow-through luminometer, which consisted of a coiled flow cell (PTFE tubing; Protech) mounted flush against the window of a photomultiplier tube (model 9828SB, Thorn-EMI, Ruislip, UK). The photomultiplier tube was operated at 900 V, which was provided by a stable power supply (model PM28BN, Thorn-EMI) via a voltage divider (C611, Thorn-EMI). The flow cell, photomultiplier tube and voltage divider were encased in a padded light-tight housing, and the output from the photomultiplier was documented with a chart recorder (YEW type 3066, Yokogawa Hokushin Electric, Tokyo, Japan). All experiments were carried out at room temperature.

Figure 1. Flow injection manifold for determination of arginine, consisting of (p) peristaltic pump, (d) chemiluminescence detector and (v) six-port injection valve.

Table 1. Chromatographic conditions for FMOC amino acid analysis (eluent A, 6 mM sodium dihydrogen phosphate (pH 6.5); eluent B, pure acetonitrile)

Time (min)	Eluent A	Eluent B	Flow rate (ml min ⁻¹)
0	80	20	0.8
5	80	20	0.8
20	65	35	0.8
30	30	70	0.8
34.05	0	100	1
37	0	100	1
37.05	80	20	1
40	80	20	1

Amino acid determinations were performed with an HP 1100 series HPLC system (Agilent Technologies, Forest Hills, Victoria, Australia), which consisted of a solvent degasser system, a quaternary pump, an autosampler and a fluorescence detector operated at 270 nm (excitation) and 315 nm (emission). The system was controlled by a Hewlett-Packard Vectra X_m series 4 data analysis workstation. The column used was a C18 Lunar column (250 mm × 4.6 mm id, 5 µm; Phenomenex, Lane Cove, NSW, Australia). An injection volume of 10 µl was used for all chromatographic runs. Chromatographic separation was achieved using a binary solvent system according to Table 1.

The hypobromite reagent was prepared daily by disproportionation of 1 ml of bromine (Hopkin and Williams, Chadwell Heath, UK) in 250 ml of cold aqueous sodium hydroxide (0.4 M; APS, Auburn, NSW, Australia) and stored in Schott bottles covered with aluminium foil to prevent photodegradation. Solutions of L-arginine (APS) were prepared by dissolution of the solid in deionised water (Milli5Q Water System, Millipore, Bedford, MA, USA), followed by appropriate dilutions using an autodilutor. Stock solutions (0.87 g l⁻¹) of the samples—Arginine, Chen: The Arousal, Kuan: The Creative, Energy Formula and Muscle Gain Formula (Musashi, Notting Hill, Victoria, Australia)—were prepared by dissolving the powder in deionised water, and each stock was diluted 50-fold prior to analysis.

For the HPLC procedure, the amino acids were derivatised with 9-fluorenylmethyl chloroformate (FMOC; Sigma-Aldrich, Castle Hill, NSW, Australia) according to the method described by Bauza *et al*³⁰ with slight modifications. The standard or sample (100 µl) was mixed with borate buffer (100 µl of 200 mM boric acid, pH 8.5). The derivatisation reagent (1.6 mg of FMOC in 200 µl of tetrahydrofuran) was then added and allowed to react for 3 min. This was followed by addition of cleavage solution (100 µl of 0.5 M NH₃), which was left to stand for a further 3 min. The reaction was terminated by addition of quenching solution (480 µl of tetrahydrofuran, 120 µl of acetic acid).

RESULTS AND DISCUSSION

The arginine contents in four nutritional supplement powders were determined using flow injection analysis with chemiluminescence detection and by HPLC with fluorescence detection. Prior to chromatographic separation the amino acids in the sample were derivatised with FMOC. A time of 50 min was required to complete each separation. The relationship between fluorescence peak area and arginine concentration was linear ($R^2 = 0.9945$) over the calibration range (from 2.5×10^{-6} to 1×10^{-4} M). The overall precision of this method was examined using 10 individual arginine solutions (1×10^{-5} M), which produced a relative standard deviation of 4%. The relatively poor precision of HPLC was most probably a consequence of the small volumes used during the derivatisation step. The sample powders each contained a variety of amino acids and other additives, such as glucosamine, inosine, adenosine triphosphate and flavouring, and therefore numerous peaks were observed on each chromatogram (Fig 2). In three of the powders, arginine was the main L-amino acid; however, in Muscle Gain Formula, others such as lysine, leucine, glutamine, histidine and taurine were found in similar or higher quantities.

The same samples and standard solutions were used for the flow injection procedure, but, unlike with HPLC, amino acid derivatisation was not required. A linear relationship ($R^2 = 0.9998$) between chemiluminescence intensity (peak height) and arginine concentration was observed over the calibration range (from 2.5×10^{-6} to 1×10^{-4} M). The precision of this technique was examined using 12 replicate injections of an arginine standard (1×10^{-5} M), which were found to have a relative standard deviation of 1%. Over 100 samples could be analysed per hour. The limit of detection was determined to be 1×10^{-7} M when using a 300 μ l sample injection loop.

The results from the analysis of the four dietary supplements using both methodologies are summarised in Fig 3; these values were in good agreement with each other and with those described as a 'typical profile'

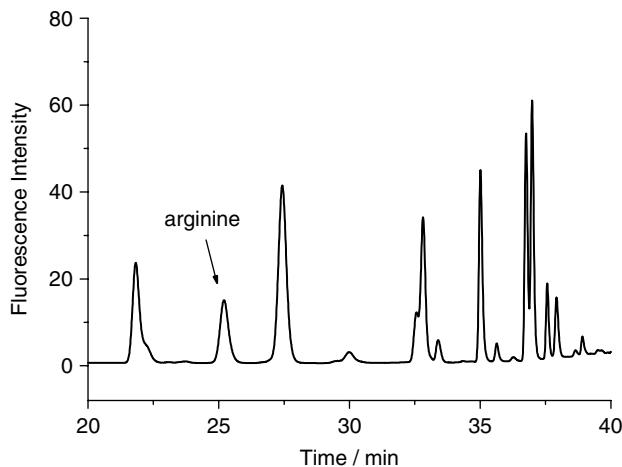


Figure 2. Chromatogram of Muscle Gain Formula sample after derivatization with FMOC.

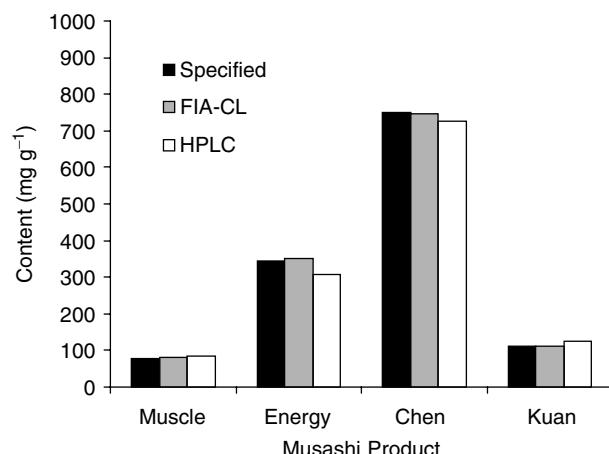


Figure 3. Arginine contents in nutritional supplement powders.

Table 2. Influence of halides in 1×10^{-4} M arginine standard

Conc (M)	Relative intensity		
	Chloride	Bromide	Iodide
0.001	1.01	0.97	1.04
0.01	0.97	0.98	0.82
0.1	0.98	0.96	0.17

on the product packaging. Interferences observed with this chemiluminescent reagent have been investigated with respect to the determination of urea,^{31,32} but it was also suspected that halides might interfere with the reaction. This was examined by adding 0.001, 0.01 or 0.1 M NaCl, NaBr or KI to an arginine standard (1×10^{-4} M). Only iodide produced a significant change in emission intensity (Table 2). Unlike chloride and bromide, iodide reacts with hypobromite to form hypoiodite, which rapidly disproportionates in alkaline solution to iodide and iodate ions³³ and, as a consequence, consumes the reagent.

The flow injection/chemiluminescence method described herein was compared with other means of determining arginine, which have been summarised in Table 3. Although the colorimetric and fluorimetric techniques are well established and compatible with common laboratory instrumentation, they suffer from relatively long reaction times and often require elevated temperatures. The enzymatic techniques provide superior selectivity but are dependent on strict control of conditions such as pH and the degradation of the enzymes over time. The earlier chemiluminescence approaches exhibit the best analytical throughput and are well suited to automation; however, these assays do not possess sufficient selectivity for the determination of arginine in many matrices without physical separation. The proposed methodology overcomes this deficiency and has a limit of detection that is comparable to that of previous studies.

CONCLUSION

The proposed flow injection/chemiluminescence methodology is inherently simple and affords a rapid

Table 3. Comparison of some selective reactions for determination of arginine

Method	Detection limit or range	Samples	Comments	Ref
<i>Absorbance</i>				
Hypobromite + thymol	1–13 µg ml ^{−1} (6–75 µM)	Protein hydrolysates	Manual procedure with reaction time of 1 min	17
Hypobromite + 1-naphthol	Not stated	Raw and roasted peanuts	Automated procedure (segmented flow) with complicated manifold. Fifty samples analysed per hour	16
<i>p</i> -Nitrophenylglyoxal	0.03–0.33 mM	Arginine residues in proteins	Incubation at 30 °C for 30 min. Interference (~24%) by free histidine	20
<i>Fluorescence</i>				
Benzoin + 2-mercaptoethanol	5–15 pmol	Arginine-containing peptides separated by HPLC	Post-column derivatisation in 15 m reaction coil at 76 °C. Reaction time of 40 s	34
9,10-Phenanthrenequinone	Not stated	Arginine content of intact proteins	Reaction time of minutes for free arginine and hours for proteins. Excess reagent produces blank signal	23
2,3-Naphthalenedicarbaldehyde	1–100 µM	Blood serum after deproteinisation	Reaction time of 25 min at 20 °C. Thiol compounds such as glutathione and cysteine interfere unless blocked	35
<i>Enzymatic</i>				
Octopine dehydrogenase	Not stated	Protein hydrolysates	Photometric detection of NADH consumption. Reaction time of 10 min	25
Arginase + urease	0.03–3 mM	Human blood serum and bovine insulin hydrolysates	Ammonia electrode with gas-permeable membrane. Response time of 5 min	36
Arginase + urease	2 µM	Pharmaceutical preparation	Surface acoustic wave conductance sensor. Analysis time of ~15 min	37
Arginine kinase + pyruvate kinase + lactate dehydrogenase	Up to 3 mM	Human blood serum	Photometric measurement of NADH consumption at 60 and 180 s. Fifteen analyses achieved per hour	38
Arginine decarboxylase	0.1–10 mM	Suggested for biological samples	Manual and segmented flow methods with incubation at 37 °C for 25 min and an ion-selective membrane electrode	39
<i>Chemiluminescence</i>				
<i>N</i> -Bromosuccinimide + fluorescein	0.03 µM	Synthetic mixtures of arginine and serine	FIA. Similar response from serine, threonine, glycine and arginine	27
Humic acid + <i>N</i> -bromosuccinimide	0.25 mg l ^{−1} (1 µM)	Pharmaceutical formulations	FIA. Mixed with humic acids prior to injection. Greater response from glycine and threonine	28
Hypobromite	0.1 µM	Nutritional supplements	FIA. High sample throughput. Interference from urea, guanidino compounds and iodide	

and selective means of determining arginine in dietary supplements containing other amino acids.

ACKNOWLEDGEMENT

Samples were kindly provided by Jarrod Travaglia of Musashi Pty Ltd (Notting Hill, Victoria, Australia; <http://www.musashi.com.au>).

REFERENCES

- Evoy D, Lieberman MD, Fahey (III) TJ and Daly JM, Immunonutrition: the role of arginine. *Nutrition* **14**:611–617 (1998).
- Hecker M and Billiar TR, Detection of L-arginine, related metabolites and guanidine compounds, in *Methods in Nitric Oxide Research*, ed by Feelisch M and Stamler JS. John Wiley & Sons, New York, pp 259–270 (1996).
- Tapiero H, Mathé G, Couveur P and Tew KD, Dossier: Free amino acids in human health and pathologies, I. Arginine. *Biomed Pharmacother* **56**:439–445 (2002).
- Christenson RH and Azzazy HME, Amino acids, in *Tietz Textbook of Clinical Chemistry*, 3rd edn, ed by Burtis CA and Ashwood ER. WB Saunders, Philadelphia, PA, pp 444–476 (1999).
- Barrett GC and Elmore DT, *Amino Acids and Peptides*. Cambridge University Press, Cambridge, pp 48–90 (1998).
- MacDonald A and Nieman TA, Flow injection and liquid chromatography detector for amino acids based on a post-column reaction with luminol. *Anal Chem* **57**:936–940 (1985).
- Koerner Jr PJ and Nieman TA, Luminol chemiluminescence HPLC reaction detector for amino acids and other ligands. *Mikrochim Acta* **2**:79–90 (1987).
- Ci Y, Tie J, Wang Q and Chang W, Flow injection and liquid chromatographic postcolumn detection of amino acids by mimetic peroxidase-catalyzed chemiluminescence reaction. *Anal Chim Acta* **269**:109–114 (1992).

9 Liao SY and Whang CW, Indirect chemiluminescence detection of amino acids separated by capillary electrophoresis. *J Chromatogr A* **736**:247–254 (1996).

10 Zhang Y, Huang B and Cheng JK, On-line indirect chemiluminescence detection in capillary electrophoresis. *Anal Chim Acta* **363**:157–163 (1998).

11 He L, Cox KA and Danielson ND, Chemiluminescence detection of amino acids, peptides, and proteins using tris(2, 2'-bipyridine)ruthenium(III). *Anal Lett* **23**:195–210 (1990).

12 Chen GN, Xu XQ, Duan JP, Lin RE and Zhang F, Flow injection and liquid chromatographic detection of amino acids based on the chemiluminescence reaction of lucigenin. *Anal Commun* **33**:99–102 (1996).

13 Miyaguchi K, Honda K and Imai K, Subpicomole chemiluminescence detection of Dns-amino acids separated by high-performance liquid chromatography with gradient elution. *J Chromatogr* **303**:173–176 (1984).

14 Toyooka T, Chokshi HP, Givens RS, Carlson RG, Lunte SM and Kuwana T, Fluorescence and chemiluminescence detection of oxazole-labeled amines and thiols. *Biomed Chromatogr* **7**:208–216 (1993).

15 Sakaguchi S, A new method for the colorimetric determination of arginine. *Jpn Med J* **1**:278–281 (1948).

16 Young CT, Automated colorimetric measurement of free arginine in peanuts as a means to evaluate maturity and flavor. *J Agric Food Chem* **21**:556–558 (1973).

17 Sastry CSP and Tummuru MK, Spectrophotometric determination of arginine in proteins. *Food Chem* **15**:257–260 (1984).

18 Rendi R, Colorimetric determination of arginine with diacetylmonoxime. *Experientia* **13**:21–22 (1957).

19 Borders Jr CL, Pearson LJ, McLaughlin AE, Gustafson ME, Vasiloff J, An FY and Morgan DJ, *Biochim Biophys Acta* **568**:491–495 (1979).

20 Yamasaki RB, Shimer DA and Feeney RE, Colorimetric determination of arginine residues in proteins by *p*-nitrophenylglyoxal. *Anal Biochem* **111**:220–226 (1981).

21 Medien HAA, Spectrophotometric method for determination and kinetics of amino acids through their reaction with syringaldehyde. *Spectrochim Acta A* **54**:359–366 (1998).

22 Cui H, Leon J, Reusaet E and Bult A, Selective determination of peptides containing specific amino acid residues by high-performance liquid chromatography and capillary electrophoresis. *J Chromatogr A* **704**:27–36 (1995).

23 Smith RE and MacQuarrie R, A sensitive fluorometric method for the determination of arginine using 9,10-phenanthrenequinone. *Anal Biochem* **90**:246–255 (1978).

24 Ródenas V, Parra A, García-Villanova J and Gómez MD, Simultaneous determination of cefepime and L-arginine in injections by second-derivative spectrophotometry. *J Pharm Biomed Anal* **13**:1095–1099 (1995).

25 Gaede G and Grieshaber M, Rapid and specific enzymic method for the estimation of L-arginine. *Anal Biochem* **66**:393–399 (1975).

26 Koncki R, Walcerz I, Ruckruh F and Glab S, Bienzymic potentiometric electrodes for creatine and L-arginine determination. *Anal Chim Acta* **333**:215–222 (1996).

27 Zhou GJ and Chen HY, Flow injection chemiluminescence determination of amino acids by oxidation with *N*-bromosuccinimide. *Anal Sci* **18**:693–696 (2002).

28 Michalowski J and Kojlo A, Use of amino-carbonyl reaction and chemiluminescence detection to the flow-injection determination of some amino acids. *Talanta* **54**:107–113 (2001).

29 Costin JW, Francis PS and Lewis SW, Selective determination of amino acids using flow injection analysis coupled with chemiluminescence detection. *Anal Chim Acta* **480**:67–77 (2003).

30 Bauza T, Blaise A, Daumas F and Cabanis JC, Determination of biogenic amines and their precursor amino acids in wines of the Vallée du Rhône by high-performance liquid chromatography with precolumn derivatization and fluorometric detection. *J Chromatogr A* **707**:373–379 (1995).

31 Hu X, Takenaka N, Kitano M, Bandow H, Maeda Y and Hattori M, Determination of trace amounts of urea by using flow injection with chemiluminescence detection. *Analyst* **119**:1829–1833 (1994).

32 Lewis SW, Francis PS, Lim KF and Jenkins GE, Monitoring urea levels during haemodialysis with a pulsed-flow chemiluminescence analyser. *Anal Chim Acta* **461**:131–139 (2002).

33 Cotton FA, Wilkinson G, Murillo CA and Bochmann M, *Advanced Inorganic Chemistry*, 6th edn Wiley, New York (1999).

34 Ohno M, Kai M and Ohkura Y, On-line post-column fluorescence derivatization of arginine-containing peptides in high-performance liquid chromatography. *J Chromatogr* **392**:309–316 (1987).

35 Miura T, Kashiwamura M and Kimura M, A fluorometric method for the specific determination of serum arginine with 2,3-naphthalenedicarbaldehyde. *Anal Biochem* **139**:432–437 (1984).

36 Nikolelis DP and Hadjioannou TP, Construction of an arginine enzyme electrode and determination of arginine in biological materials. *Anal Chim Acta* **147**:33–39 (1983).

37 Liu D, Yin A, Ge K, Chen K, Nie L and Yao S, Enzymic analysis of arginine with the SAW/conductance sensor system. *Enzyme Microb Technol* **17**:856–863 (1995).

38 Konings CH, A kinetic procedure for the estimation of arginine in serum using arginine kinase. *Clin Chim Acta* **176**:185–193 (1988).

39 Tong SL and Rechnitz GA, Enzymatic L-arginine and L-lysine determination using a carbonate ion selective membrane electrode. *Anal Lett* **9**:1–11 (1976).