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Abstract: This study was implemented to evaluate the potential of near-infrared reflectance spectroscopy
(NIRS) technology to estimate the chemical composition and in vitro digestibility of botanically complex
herbage mixtures characterised, moreover, by a noteworthy variation among samples in the maturity
of the forage plants. A total of 107 herbage samples harvested from permanent meadows located in the
uplands of León (northwestern Spain) were analysed to determine their chemical composition. In addition,
the in vitro digestibility of each herbage sample was measured by two different in vitro procedures using
buffered rumen fluid. A Bran + Luebbe InfraAlyzer 500 spectrophotometer was used to obtain the
near-infrared spectra corresponding to each herbage sample. Prediction equations developed for the
estimation of the chemical components showed that NIRS technology could predict these parameters
accurately, especially the crude protein and neutral detergent fibre contents (R2

adj > 0.95 in both cases).
In vitro digestibility parameters could also be predicted with an acceptable degree of accuracy using NIRS
technology, particularly the in vitro Tilley and Terry organic matter digestibility (R2

adj = 0.925, standard
error of prediction (SEP) = 2.165% organic matter) and the in vitro dry matter true digestibility measured
according to the Goering and Van Soest procedure (R2

adj = 0.891, SEP = 2.208% dry matter).
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INTRODUCTION
Herbage hay harvested from permanent meadows,
together with silage, represents the principal preserved
forage for feeding ruminant animals in many parts of
southern Europe, in particular the uplands of Spain.
The permanent mountain meadows of these areas are
characterised by a highly diverse botanical composi-
tion, so it is possible to find, in each meadow, more
than 50 plant species corresponding to different botan-
ical families, mainly Graminae and Leguminosae. On
the other hand, these natural resources are harvested
several times per year, usually after the spring primary
growth (between late May and mid July) and then
after the summer/autumn secondary regrowth. Thus
the plants may be at different stages of maturity at har-
vest time. Furthermore, there are other factors related
to the management of the meadows (possibility of

irrigation, fertiliser use, etc) and to the environmental
conditions that have a certain influence on the chemi-
cal composition and nutritive value of these forages.1,2

In this last sense the digestibility of the forages is
an essential attribute of their nutritive value, as it
greatly influences not only the voluntary intake of dry
matter but also the efficiency of utilisation of the avail-
able nutrients.3 This is the reason why its accurate
estimation is required by most feeding systems to cal-
culate the metabolisable energy4,5 or net energy6–8 of
the feedstuffs.

Chemical composition parameters have been used
to estimate the digestibility of forages, since it is well
known that the structure and thus the components
of the plant vary as the stage of maturity advances.2

However, the relationship between digestibility and
chemical composition is very complex and depends
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on the botanical species.9 Currently, several in vitro
techniques10–12 are commonly used for routine anal-
yses in commercial laboratories to estimate the
digestibility. In vitro procedures are less expensive
and time-consuming than the in vivo method requir-
ing total faecal collection. Digestibility coefficients
obtained in vitro are highly repeatable and closely
correlated with those obtained in vivo, although the
relationship between in vitro and in vivo digestibility is
not so simple for legume-rich forages.9 Nevertheless,
when a large-scale testing of feedstuffs is required,
in vitro techniques may also be expensive and time-
consuming. Therefore a faster and less laborious, and
at the same time feasible, repeatable and reliable, alter-
native procedure for nutritive evaluation is desirable.

Near-infrared reflectance spectroscopy (NIRS) has
been successful in predicting, rapidly and accurately,
the chemical composition and digestibility of very
different forages.13 NIRS technology is also a non-
destructive method requiring small amounts of
sample. Nevertheless, there is little information about
the potential of this analytical procedure to estimate
parameters related to the nutritive value of botanically
complex resources14–17 such as those harvested from
permanent mountain meadows situated in the uplands
of León (northwestern Spain). This study is the first of
a series concerned with the ability of NIRS technology
to estimate the nutritive value of these kinds of forages.
Thus, in the present study, NIRS technology was
used to estimate the chemical composition and in vitro
digestibility. The second study will examine the ability
of NIRS technology to predict the kinetic parameters
and extent of degradation of these herbage samples in
the rumen.18

EXPERIMENTAL
Forage samples
This work was carried out with 107 herbage samples
harvested after the spring primary growth and again
after the summer/autumn secondary regrowth of
permanent meadows located in the uplands of León
(northwestern Spain) at an altitude of 900–1450 m.
These meadows are plant communities classified
within the vegetation type Arrhenatheretalia, ie pastures
and meadows on well-drained, relatively fertile mineral
soils.19 Predominant forage species were Alopecurus
pratensis L, Anthoxanthum odoratum L, Arrhenatherum
elatius (L) Beauv ex J & K Presl, Bromus hordeaceus L,
Cynosurus cristatus L, Dactylis glomerata L, Festuca rubra
L, Holcus lanatus L, Lolium perenne L, Poa pratensis L,
Poa trivialis L, Trisetum flavescens (L) Beauv, Trifolium
pratense L, Trifolium repens L, Bellis perennis L, Carum
carvi L, Centaurea nigra L, Cerastium fontanum Baumg,
Plantago lanceolata L, Ranunculus bulbosus L, Rumex
acetosa L, Taraxacum officinale GH Weber ex Wiggers
and Veronica arvensis L. The proportion of each species
in the herbage samples was highly variable. Owing to
the different harvest seasons (spring, summer and
autumn) and the various cutting dates within each

season, plants were at significantly different stages of
maturity. Samples were oven dried at 60 ◦C and then
ground to pass a 1 mm screen, to be used subsequently
for chemical analyses, in vitro digestibility studies
and NIRS.

Chemical composition
Dry matter (DM), ash and crude protein (CP = N ×
6.25, N being the nitrogen content) were determined
by the proximate procedures outlined by the AOAC.20

The procedure described by Van Soest et al21 was
used for the analysis of neutral detergent fibre
(NDF), whereas acid detergent fibre (ADF) and acid
detergent lignin (ADL) were determined according
to the procedures proposed by Goering and Van
Soest.10 Acid detergent-insoluble nitrogen (ADIN)
was determined by measuring the N content of the
ADF residue by the macro-Kjeldahl technique.10

In vitro digestibility
The method of Tilley and Terry12 was used to
determine in vitro DM digestibility (DMDTT) and
organic matter (OM) digestibility (OMDTT). In vitro
DM digestibility was also determined according to
the Goering and Van Soest10 procedure (DMDGV).
All methods were performed with the modifications
proposed by the ANKOM-DAISY procedure.22

Three mature Merino ewes fitted with permanent
rumen cannulae and fed alfalfa hay were used to
obtain the rumen liquor needed for the incubations
just before the morning feeding. The rumen liquor
was filtered through four layers of gauze in the
laboratory. Previously, a culture medium was prepared
with macro- and micro-mineral solutions, bicarbonate
buffer and resazurin as described by Goering and Van
Soest.10 The medium was kept at 39 ◦C, saturated
with CO2 and reduced by the addition of a solution
containing cysteine-HCl and Na2S. Rumen fluid
was diluted into the medium in the proportion 1:4
(v/v). Samples (250 mg) were weighed out into filter
bags (size 5 cm × 5 cm, pore size 20 µm; ANKOM
Technology, Macedon, NY, USA), which were sealed
with a heater and placed in 5 l incubation jars. Each
incubation jar was filled with 2 l of buffered rumen
fluid dispensed anaerobically and closed with a plastic
lid provided with a single-way valve which avoids the
accumulation of fermentation gases. Then the jars
were shaken thoroughly and placed in a revolving
incubator (DAISY, ANKOM Technology) at 39 ◦C,
with continuous rotation to facilitate the effective
immersion of the bags in the rumen fluid. After
48 h of incubation in buffered rumen fluid, bags were
either subjected to a 48 h pepsin-HCl digestion and
incineration (DMDTT and OMDTT)12 or gently rinsed
in cold water and treated with a neutral detergent
solution at 100 ◦C for 1 h (DMDGV).10 Measurements
were made in duplicate and standards were included
in each method.

J Sci Food Agric 85:1564–1571 (2005) 1565



S Andrés et al

Near-infrared spectroscopy
Herbage samples were scanned at 2 nm inter-
vals over the near-infrared (NIR) spectral range
(1100–2500 nm) using an InfraAlyzer 500 spec-
trophotometer (Bran + Luebbe GmbH, Norderstedt,
Germany). Samples were scanned twice in duplicate
repacking using two different cells (four spectra per
sample) and the absorbance data recorded as log(1/R),
R being the reflectance. The mean spectrum was
used for each sample and, finally, different math-
ematical treatments of the spectra based on first-
or second-order derivatives were used in order to
optimise the extraction of useful information. The col-
lection of the spectra and the application of derivatives
were performed using SESAME software (version 2.1,
Bran + Luebbe, New York, NY, USA).

Prediction equations
Sixty-two samples (calibration set) were selected on
the basis of their chemical composition for developing
the prediction models. The remaining 45 samples were
used as the validation set.

Calibration equations for the prediction of the
chemical composition data or the in vitro digestibility
from NIR spectra were obtained using stepwise
multiple linear regression (MLR). The prediction
equations derived with the calibration set were tested
subsequently using the data of the samples included in
the validation set. The collinearity of the absorbance
data is well known, so, in order to avoid overfitting
the prediction equations, the optimum model for each
variable was selected on the basis of minimising the
standard error of prediction (SEP) obtained for the
validation set. The calibrations were performed using
SESAME software (version 2.1, Bran + Luebbe).

Moreover, the different components of the mean
square prediction error (MSPE) were analysed by
means of the Theil decomposition:23,24

SEP2 = MSPE =
∑

(A − P)2

n

= (A − P)2 + (SP − rSA)2 + (1 − r2)S2
A

where n represents the number of samples in the
validation set, A denotes the reference values, P
denotes the NIRS-predicted values, A and P are
the means of the reference and predicted values
respectively, S2

A and S2
P are the variances of the

reference and predicted values respectively and r is
the coefficient of correlation between the reference
and predicted values. Then these three terms were
standardised by dividing by the total MSPE to
calculate the proportion of errors due to bias (UM),
regression (UR) and unexplained variance (UD)

respectively:

MSPE
MSPE

= (A − P)2

MSPE
+ (SP − rSA)2

MSPE
+ (1 − r2)S2

A

MSPE

= UM + UR + UD = 1

The concordance correlation coefficient (ρ) for the
validation set was calculated as defined by Lin:24,25

ρ = S2
A + S2

P − S2
(A−P)

S2
A + S2

P + (A − P)2

This statistic assesses not only the linear relationship
between the reference and NIRS-predicted values but
also the agreement between them, assuming that the
intercept is zero and the slope is one, in contrast to the
Pearson correlation coefficient which does not entail
these assumptions.

On the other hand, the in vitro digestibility was
alternatively estimated using the different chemical
components as independent variables. In this last case
the independent variables were selected by stepwise
multiple linear regression (MLR) using the SAS
program.26 Once independent variables had been
selected, the UNSCRAMBLER program (version
5.03, Camo, Trondheim, Norway) was used to
estimate the standard error of prediction (SEP) for
the validation set to enable comparison with the
NIR equations. In fact, the optimal equation for the
prediction of in vitro digestibility was selected on the
basis of minimising the SEP for the validation set.

RESULTS AND DISCUSSION
The range, mean and standard deviation (SD) of the
chemical data and in vitro digestibility coefficients of
the samples included in the calibration and validation
sets are summarised in Table 1. With the exception of
the acid detergent lignin (ADL) and acid detergent-
insoluble nitrogen (ADIN) contents, the differences
observed between the two sets in the mean and
SD of each parameter were less than 10 and 25%
respectively, so it could be considered that samples
used to perform the NIR equations, ie the calibration
set, were similar to those included in the validation
set.27,28

NIR spectra were used to predict the chemical
composition and in vitro digestibility coefficients of
the samples studied. Statistics corresponding to the
selected equations for the prediction of each parameter
are shown in Table 2.

Table 3 shows the wavelengths of the NIR spectra
(1100–2500 nm) that were selected for the prediction
of each chemical and biological parameter.

Protein analysis
Prediction of CP and ADIN contents by NIRS technology
The coefficient of determination adjusted for the
number of degrees of freedom (R2

adj) corresponding
to the equation selected for the estimation of the
CP content was satisfactory (R2

adj = 0.969) (Table 2).
Moreover, the difference between the standard error of
prediction (SEP = 5.10 g kg−1DM) and the standard
error of calibration (SEC = 4.91 g kg−1DM) was
3.9%, significantly smaller than the acceptable limit of
20% proposed by Moya.28 In addition, the greatest
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Table 1. Range, mean and standard deviation (SD) of calibration and validation sets for chemical and digestibility parameters

Calibration set (n = 62) Validation set (n = 45)

Range Mean SD Range Mean SD

Chemical data (g kg−1 DM)

Ash 61–201 93 20.5 65–167 96 22.4
CP 52–179 118 28.1 47–168 112 35.2
NDF 359–684 518 77.9 392–673 503 92.4
ADF 210–383 290 40.6 222–423 287 53.7
ADL 11–55 32 10.2 16–64 42 13.2
ADIN 0.5–4.4 2.2 1.11 0.4–5.5 2.8 1.59

Digestibility data (%)

DMDTT 63.1–88.0 79.2 7.62 63.7–87.6 79.4 7.29
OMDTT 62.2–88.9 79.6 6.87 63.3–88.1 79.2 7.61
DMDGV 63.7–88.1 78.7 6.24 65.0–88.7 78.6 7.53

DM = dry matter; CP = crude protein; NDF = neutral detergent fibre; ADF = acid detergent fibre; ADL = acid detergent lignin; ADIN = acid
detergent-insoluble nitrogen; DMDTT = in vitro DM digestibility according to Tilley and Terry; OMDTT = in vitro organic matter digestibility according
to Tilley and Terry; DMDGV = in vitro DM digestibility according to Goering and Van Soest.

Table 2. NIR calibration and validation statistics for chemical and digestibility parameters

Theil decomposition

Treatment p R2
adj SEC SEP UM UR UD RPD ρ

Chemical data
CP log(1/R) 8 0.969 4.91 5.10 0.180 0.053 0.767 6.90 0.99
ADIN 2,2,20 4 0.861 0.41 0.59 0.043 0.103 0.855 2.70 0.92
NDF 2,6,4 7 0.975 12.32 12.75 0.034 0.059 0.907 7.24 0.99
ADF 2,6,4 5 0.957 8.46 13.62 0.106 0.003 0.890 3.94 0.97
ADL 2,2,20 4 0.655 5.97 7.18 0.298 0.027 0.676 1.84 0.83

Digestibility data
DMDTT 2,15,5 2 0.819 2.818 2.395 0.005 0.049 0.946 3.04 0.95
OMDTT log(1/R) 5 0.925 1.882 2.165 0.012 0.205 0.782 3.17 0.96
DMDGV log(1/R) 5 0.891 2.057 2.208 0.003 0.000 0.997 3.41 0.95

Treatment = mathematical transformation applied to the spectra, where the first number is the derivative order, the second number is the gap
between points used to calculate the difference, and the last one is the number of data points used to smooth the data; log(1/R) = absorbance data
without mathematical transformation; p = number of terms in the equation; R2

adj = coefficient of determination adjusted for the degrees of freedom;
SEC = standard error of calibration; SEP = standard error of prediction; UM, UR and UD = proportion of mean square prediction error corresponding
to the bias, regression and unexplained variance respectively; RPD = ratio performance deviation (standard deviation/SEP); ρ = concordance
correlation coefficient; CP = crude protein; ADIN = acid detergent-insoluble nitrogen; NDF = neutral detergent fibre; ADF = acid detergent fibre;
ADL = acid detergent lignin; DMDTT = in vitro dry matter digestibility according to Tilley and Terry; OMDTT = in vitro organic matter digestibility
according to Tilley and Terry; DMDGV = in vitro DM digestibility according to Goering and Van Soest.

proportion of the mean square prediction error
(MSPE) was due neither to the bias nor to the
regression, but to the unexplained variance (UD).
The concordance correlation coefficient (ρ = 0.99)

is further evidence of the close similarity between
the reference data and the NIRS-predicted values
for the validation set. Furthermore, Williams and
Sobering29 suggested that the statistic RPD (ratio
performance deviation), which is the ratio of the SD
of the reference values of the validation set to the SEP,
should be larger than 2.5. Lower RPD values can be
attributed either to a narrow range of the reference
values (giving a small SD) or to a large error in the
estimation (SEP) compared with the variability of the
reference values (SD). In both cases it is more difficult
to attain accurate estimates of the parameters using
NIR equations.30 In this sense the equation derived

in our study showed a very high ratio performance
deviation (RPD = 6.90). All these statistics seemed
to indicate the outstanding ability of prediction of
the equation selected to estimate the CP content of
botanically complex herbage samples. These results
are in agreement with those reported for similar
forages14 and also for other kinds of feeds.13,31–37 The
reason for the accurate estimation of the CP content by
NIRS technology is the highly significant correlation
between the absorbance of the amide bonds involving
nitrogen (N) and the N content measured by the
Kjeldahl method.38,39

The acid detergent-insoluble nitrogen (ADIN)
content is a parameter of considerable interest in
ruminant feeding systems, because it represents the
indigestible fraction of the feed protein. Likewise, the
ADIN content is an indicator of the heat-damaged
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Table 3. Wavelengths selected from near-infrared spectra for prediction of different chemical and in vitro digestibility parameters

Parameter Selected wavelengths (nm)

CP 1466 1678 1706 1714 1740 1786 1804 2012
ADIN 1522 2028 2252 2374
NDF 1500 1612 1726 1756 2238 2320 2350
ADF 1196 1512 2172 2290 2458
ADL 1256 1396 1554 2352
DMDTT 1828 2300
OMDTT 1556 1564 1638 1672 1702
DMDGV 1254 1428 1688 1752 1924

CP = crude protein; ADIN = acid detergent-insoluble nitrogen; NDF = neutral detergent fibre; ADF = acid detergent fibre; ADL = acid detergent
lignin; DMDTT = in vitro dry matter digestibility according to Tilley and Terry; OMDTT = in vitro organic matter digestibility according to Tilley and
Terry; DMDGV = in vitro DM digestibility according to Goering and Van Soest.

protein.40 Nevertheless, it was not so accurately
predicted by NIRS technology as the CP content
(R2

adj = 0.861, SEP = 0.59 g kg−1 DM, RPD = 2.70,
ρ = 0.92), probably because it would be necessary
to differentiate between different types of bonds in
which the N is implicated,41 as ADIN is only a
specific fraction of the total nitrogen compounds.
These results were not as good as those indicated
by De la Roza et al42 for grass and maize silages
(R2 = 0.954, RPD = 3.19), probably because in that
study the number of samples was larger (n = 130) and
the forages studied were botanically more uniform.

NIR spectra interpretation
In reference to the CP and ADIN contents,
the wavelengths selected at 1466 and 1522 nm
(Table 3) were inside the band 1463–1570 nm,
which corresponds to the N–H stretch first-overtone
region.43 On the other hand, the 2012 and 2028 nm
wavelengths could be related to the amides, since these
nitrogen compounds have two distinctive absorption
peaks at 2050 and 2180 nm.43,44 Moreover, the
equation developed to estimate the CP content
showed a lot of wavelengths selected in the band
corresponding to the C–H stretch first-overtone
region (1600–1800 nm), which may be related to
the structural carbohydrates (NDF) present in the
forages,43 which were negatively correlated with
the CP content (r = −0.779, P < 0.0001). The
wavelengths selected at 2252 and 2374 nm in the
equation performed to estimate the ADIN content
could be related to the combination of different
forms of vibration of C–H features included in
the structural carbohydrates as well.43 Anyway, all
these wavelengths were very close to those previously
reported for the estimation of the CP content in
botanically complex samples14,15 and diverse forages13

and for the prediction of the ADIN content in diverse
forages.35,40

Cell wall analysis
Prediction of NDF, ADF and ADL contents by NIRS
technology
The neutral detergent fibre (NDF) content of the
forages represents the non-soluble fraction of the cell

wall, so it greatly influences the voluntary intake of
DM.2 In the present study the NDF content could
be predicted more accurately by NIRS technology
(R2

adj = 0.975, SEP = 12.75 g kg−1 DM, RPD = 7.24,
ρ = 0.99) than the CP content, despite being a
very complex chemical fraction composed of different
structural carbohydrates and lignin. The wide range of
values shown by the population of samples (Table 1)
could explain this circumstance.30 These results are
similar to those reported for maize stover,45 Cajanus
cajan46 and different grasses,47 and our prediction of
NDF content from NIR spectra seemed to be slightly
better than those previously outlined for herbage
pastures.14,48

The calibration and validation statistics for the
estimation of the acid detergent fibre (ADF) content
(R2

adj = 0.957, SEP = 13.62 g kg−1 DM, RPD = 3.94,
ρ = 0.97) and acid detergent lignin (ADL) content
(R2

adj = 0.655, SEP = 7.18 g kg−1 DM, RPD = 1.84,
ρ = 0.83) were poorer than those observed for
the NDF fraction. It is well known that a low
repeatability of the reference method negatively
influences the prediction by NIRS technology.49

The higher coefficient of variation (CV) between
replicates obtained in the determination of the ADL
(CVADL = 7.47%), and to a lesser extent of the
ADF (CVADF = 1.31%), in comparison with that of
the NDF (CVNDF = 0.86%) could be, in part, the
reason for the lower accuracy of prediction of these
chemical data by NIRS. Moreover, it must be taken
into account that the lignin is not a homogeneous
chemical fraction, and its chemical composition varies
with the plant species and stage of maturity.2 Anyway,
the statistics obtained for the prediction of ADF and
ADL contents were similar to those observed for other
forages.13,14,35,36,45–48,50,51

NIR spectra interpretation
As can be observed (Table 3), most of the wavelengths
selected for the estimation of the NDF, ADF and
ADL contents were in the same regions indicated
for the CP and ADIN contents, probably because
of the negative correlation existing between the
structural carbohydrates and the CP content. Thus
it could be expected that wavelengths in the ranges
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1463–1570 and 1600–1800 nm appeared in the
prediction equations, as these bands seem to be
related to the N–H stretch first overtone and the
C–H stretch first overtone respectively.43 Moreover,
there were also wavelengths located at 1190–1260 nm
(second overtone of the C–H stretch vibration)
and 2200–2400 nm (C–H combination bands), all
of which are most likely related to the structural
carbohydrates present in the samples.43 Most of
the wavelengths selected for the estimation of the
NDF, ADF and ADL contents were similar to those
described previously by other authors.13,14,35,37,40,45,51

In vitro digestibility
Prediction of DMDTT, OMDTT and DMDGV

As shown in Table 2, all the in vitro digestibility
parameters (DMDTT, OMDTT and DMDGV) could
be successfully predicted by NIRS technology.
Nevertheless, the R2

adj and SEC were poorer for
the model estimating DMDTT (R2

adj = 0.819, SEP =
2.395% DM) than for that corresponding to DMDGV

(R2
adj = 0.891, SEP = 2.208% DM). Moreover, the

predictive ability of the equation developed to estimate
DMDGV seemed to be better, judging by the higher
RPD value (3.04 vs 3.41). The extraction with
the neutral detergent removes bacterial cell walls
and other endogenous products, so the Goering
and Van Soest procedure has been considered a
measure of the true digestibility, whereas the original
method of Tilley and Terry is a measurement of
the apparent in vitro digestibility.2 In this last sense
it is possible that the microbial contamination of
the incubation residues influenced negatively the
prediction of DMDTT by NIRS technology. This
fact, together with the shorter time required for
the Goering and Van Soest procedure (48 vs 96 h),
indicates the convenience of the utilisation of this
method as reference procedure to perform the NIR
equations to predict the in vitro DM digestibility of
these kinds of forages. The results obtained in the
present study were comparable to those indicated by
Smith et al52 to estimate DMDGV of Lolium rigidum
by NIRS technology (R2 = 0.94, SEC = 3.4% DM,
RPD = 3.68).

The in vitro organic matter digestibility (OMDTT)

could also be accurately predicted by NIRS (R2
adj =

0.925, SEP = 2.165 g kg−1 DM, RPD = 3.17). The
calibration and validation statistics for the estimation
of OMDTT were in agreement with those reported by
Van Waes et al53 (R2 = 0.85, SEP = 2.05% DM) for
grass and maize samples.

NIR spectra interpretation
The wavelengths selected for the estimation of
in vitro digestibility (Table 3) were located in the
same bands previously described for the chem-
ical data. Thus most of the wavelengths were
localised in the C–H stretch second-overtone band
(1190–1260 nm), the N–H stretch first-overtone
band (1463–1570 nm) or in that corresponding to

the C–H stretch first overtone (1600–1800 nm).
This is in agreement with those described previ-
ously by other authors.35,54 Nevertheless, the wave-
lengths selected at 1672 and 1688 nm for the
estimation of OMDTT and DMDGV could be
related specifically to the aromatic region of the
lignin.34,43

Relationship between chemical composition and in vitro
digestibility of herbage
The NIR spectra interpretation would indicate a clear
relation between the wavelengths selected for the
estimation of chemical data and those concerned
with the in vitro digestibility. Thus it seems that
the in vitro digestibility of these forages is predicted
from wavelengths of the NIR spectra related to
some specific chemical components. This is in
agreement with the well-known significant (P <

0.0001) correlation between digestibility and chemical
composition (Table 4), showing positive correlation
coefficients with the CP content and negative with the
NDF and ADF contents.

These correlations could be due, in part, to the
different stages of maturity of the plants harvested
over different seasons. A higher plant maturity
determined an increased stem-to-leaf ratio and a
greater development of the vascular and supporting
plant tissues, resulting in a steady decline of the
cell contents (sugar, fructans, amino acids, some
peptides, etc), which are largely digestible.2,55 In
contrast, the cell wall content and the degree of

Table 4. Coefficients of correlation (Pearson) between chemical

composition and in vitro digestibility parameters, and statistics of

prediction equations to estimate in vitro digestibility using chemical

composition data as independent variables

DMDTT OMDTT DMDGV

Correlation coefficients

CP 0.884∗∗∗ 0.899∗∗∗ 0.887∗∗∗
ADIN 0.747∗∗∗ 0.758∗∗∗ 0.761∗∗∗
NDF −0.892∗∗∗ −0.884∗∗∗ −0.899∗∗∗
ADF −0.895∗∗∗ −0.883∗∗∗ −0.876∗∗∗
ADL 0.396∗∗∗ 0.385∗∗∗ 0.412∗∗∗

Multiple regression analysis for prediction of digestibility from
chemical composition

p ADF, CP NDF, CP NDF, ADL, CP, ADIN
R2

adj 0.835 0.848 0.874
SEC 2.67 2.65 2.20
SEP 2.37 2.59 2.37
RPD 3.07 2.93 3.18

DMDTT = in vitro dry matter digestibility according to Tilley and Terry;
OMDTT = in vitro organic matter digestibility according to Tilley and
Terry; DMDGV = in vitro DM digestibility according to Goering and Van
Soest; CP = crude protein; ADIN = acid detergent-insoluble nitrogen;
NDF = neutral detergent fibre; ADF = acid detergent fibre; ADL = acid
detergent lignin;
∗∗∗ P < 0.0001; p = terms included in the selected multiple regression
equation; R2

adj = coefficient of determination adjusted for the degrees
of freedom; SEC = standard error of calibration; SEP = standard
error of prediction; RPD = ratio performance deviation (standard
deviation/SEP).
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lignification of the secondary cell wall increase as
plants mature.2 Unexpectedly, in this study the
digestibility coefficients were positively correlated with
the ADL content (Table 4), probably as result of
the large diversity in the botanical composition and
differences in plant maturity of the samples studied in
this work. In this sense, herbage samples harvested in
spring had a higher proportion of grasses than summer
and autumn regrowths, which were richer in legumes.
It is well known that the degree of lignification of
the cell wall is higher in legumes, but when the plants
show different stages of maturity—such as the samples
of the present study—this factor is not the only one
which influences the microbial cell wall degradation.2

For example, the stem-to-leaf ratio, the cuticular layer
and the silica content increase as plants mature.2,56

These changes are more pronounced for the grasses
than for the legumes and all of them seem to negatively
affect the digestion of forage in the rumen. Therefore
mature grasses have higher cell wall content and may
be less digestible than mature legumes regardless of
the higher lignin content of these latter species.

When the predictive ability of the NIRS equations
(Table 2) was compared with that corresponding to
the chemical data (Table 4), it could be observed that
the in vitro digestibility parameters were predicted with
similar or higher accuracy using the NIR spectra as
independent variables. This could probably be due to
the fact that NIR spectra contain information not only
about all the chemical components but also about
physical properties of the samples. In this sense,
the more fibrous a sample is, the coarser are the
particles recovered after grinding, and information on
this physical factor, along with that on the chemical
composition, can be reflected in the NIR spectra.57

CONCLUSIONS
The calibration and validation statistics obtained in
the present study showed the potential of NIRS tech-
nology to predict accurately the chemical composition
of botanically complex herbage samples, particularly
the CP and NDF contents. In addition, these chemi-
cal components were highly correlated with the in vitro
digestibility of these herbage samples. Consequently,
NIR spectra resulted in satisfactory prediction equa-
tions to estimate the in vitro digestibility of botanically
complex herbage harvested from permanent mountain
meadows. Nevertheless, both the accuracy of predic-
tion by NIRS and the relationship between in vitro
and in vivo digestibility could vary depending on the
botanical composition of the herbage samples.9 This
limitation should be taken into account before extrap-
olating the results obtained in the present study to
other kinds of samples.
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