INTRODUCTION

The use of high hydrostatic pressure (HHP) is a preservation technology which can provide fresh-like quality to heat sensitive foods (Hayashi, 1989). HHP reduces microbial counts (Knorr, 1995a; Palou et al., 1997) and inactivates enzymes (Knorr, 1995b; Seyderhelm et al., 1996; López-Malo et al., 1998), while retaining the flavor and color quality of foods (Yen and Lin, 1996). However, enzymatic reactions are key problems in HHP processing of fruits. The pressure required to inactivate polyphenoloxidase (PPO) surpasses that needed to inactivate microbial vegetative cells. HHP effects on the enzymes depend on type of enzyme, nature of substrates, pressure, temperature and time of processing. Weemaes et al. (1997) reported an extreme pressure resistance of PPO from mushrooms. Knorr (1995b) reported that PPO activity after HHP treatments depended on the specific type of fruit or vegetable. Eshtiaghi and Knorr (1993) and López-Malo et al. (1998) reported notable reductions in initial PPO activity when HHP was combined with heat or low pH. Consequently, for the development of HHP processes for fruit products, it is essential to understand the influence of pressure on deteriorative enzymes. The purpose of this research was to determine the effects of blanching and HHP treatments on natural flora evolution, PPO activity, and color during storage of banana puree adjusted to pH 3.4 and water activity of \(a_w 0.97 \).

MATERIALS & METHODS

Preparation of banana puree

Bananas (Musa sapientum) were washed, peeled, cut transversally into slices (1 cm thick) and blanched in saturated steam for 1, 3, 5 or 7 min. Immediately after, the slices were sprinkled with 1% w/v ascorbic acid solution, and incubated for 48h at 37°C. Yeast and mold counts were determined daily during storage.

Microbiological analysis

Banana puree (10g) was serially diluted with sterilized peptone water (0.1%). For the standard plate counts, 1 mL of each dilution was poured plated in triplicate using plate count agar (Difco Laboratories, Detroit, MI) and incubated for 48h at 37°C. Yeast and mold counts were determined in triplicate on potato dextrose agar (Difco Laboratories, Detroit, MI), acidified with a 10% tartaric acid solution, and incubated for 5 days at 25°C.

Polyphenoloxidase activity

Banana purees were immediately analyzed after blanching and HHP, or stored at -40°C until analysis, but not longer than 12h. A 10μL aliquot of puree was mixed with 10 μL of McIlvaine citric-phosphate buffer, pH 6.5, using a vortex mixer. The homogenate was centrifuged at 6000 rpm and 4°C for 30 min in a Sorvall RT 6000B centrifuge (Du Pont Co., Newtown, CT). The supernatant was filtered with Whatman pa-
per No. 1 and analyzed for PPO activity at 420 nm and 25°C as described by Pizzocaro et al. (1993). Catechol solution (1 mL 0.175M) and 2 mL of McIlvaine buffer pH 6.5 were added to 0.5 mL of PPO extract. PPO activity was assayed in a 8452A Diode Array Spectrophotometer (Hewlett-Packard, Palo Alto, CA) and calculated on the basis of the slope from the linear portion of the curve of ∆A420 vs time up to 3 min. One unit of PPO activity was defined as 0.001 ∆A420 min⁻¹ (mL of extract)⁻¹. Residual PPO activity was expressed as the ratio between the activity of PPO and residual polyphenoloxidase (PPO) activity in banana puree. The hue (H), chroma (C) and browning index (BI) were calculated as follows:

$$H = \tan^{-1} \left(\frac{b}{a} \right)$$

$$C = \sqrt{a^2 + b^2}$$

$$BI = \frac{100(x - 0.31)}{0.172}$$

where:

$$x = (a + 1.75L) \cdot \frac{(5.645 + a - 3.012b)}{2}$$

The browning index (BI) represents the purity of brown color and is reported as an important parameter in processes where enzymatic or nonenzymatic browning takes place (Buera et al., 1986; Guerrero et al., 1996; Castaño et al., 1998).

Statistical analysis

Analysis of variance (ANOVA) of the effects of pressure and blanching as well as their interactions on residual PPO activity, color parameters, and browning rates of banana purees was performed (Gacula and Singh, 1984). Statistica™ software (Statsoft™, Tulsa, OK) was used to analyze the experimental results. Significance of differences was defined at p ≤ 0.05.

RESULTS & DISCUSSION

**STANDARD PLATE AS WELL AS YEAST and mold counts of HHP treated purees were <10 CFU/g throughout 15 days of storage; equivalent results were observed for the color control purees containing potassium sorbate. However, the purees without HHP treatment or preservative spoiled within the first 3 days of storage at 25°C and before changes in color were noticed. Castaño et al. (1998) reported that banana puree with a pH 0.97 and pH 3.4 prepared with 1000 ppm of potassium sorbate was sensory evaluated after formulation with an overall acceptability of 6.4 in a 9 point hedonic scale. Also, banana puree microbial stability was demonstrated during 60 days of storage at 25 and 35°C.

During blanching (0.1 MPa) the PPO activity of banana puree was reduced (Fig. 1) from 416 to 390, 272, 141 or 63 units when the blanching time was 1, 3, 5 or 7 min; this represented a residual PPO activity of 93.8, 65.4, 33.9 and 15.1%, respectively. PPO activity increased after HHP treatment at 517 MPa for 10 min in the puree prepared without a blanching pretreatment. However, a 79% residual activity was observed for unblanched puree when HHP was applied at 689 MPa for 10 min. PPO activity was reduced during steam blanching and further reduced after HHP treatments.

Seyderhelm et al. (1996) reported important differences in the barostability of enzymes. Peroxidase, catalase, phosphatase and PPO are resistant to pressures of 600-700 MPa at 25°C. Anese et al. (1995) reported a reduction (p<0.05) in PPO activity of a pH 4.5 apple cell free extract after pressurization at 700 MPa. Weemaes et al. (1997) observed that HHP treatments between 600 and 900 MPa induced structural changes in mushroom PPO conformation and a HHP treatment at 800 MPa inactivated PPO. López-Malo et al. (1998) reported a reduction (p<0.05) in PPO activity in avocado puree after pressure treatments at 689 MPa, which was greater as the avocado puree pH was reduced from 4.3 to 4.1 or 3.9 with phosphoric acid.

 Appreciable differences in PPO pressure resistance are dependent on the plant source. However, it is recognized that pressures higher than 700 MPa are needed to completely inactivate PPO. In our case, the low pH (3.4) and steam blanching aided in reducing PPO

Table 1 - Initial color parameter values of banana puree pretreated for selected blanching times and subjected or not to high pressure treatments

<table>
<thead>
<tr>
<th>Blanching time (min)</th>
<th>L</th>
<th>a</th>
<th>b</th>
<th>Hue</th>
<th>Chroma</th>
<th>Browning Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without pressure treatment</td>
<td>0</td>
<td>60.29</td>
<td>1.92</td>
<td>18.23</td>
<td>91.59</td>
<td>17.94</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>55.71</td>
<td>1.40</td>
<td>17.82</td>
<td>85.51</td>
<td>17.08</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>51.06</td>
<td>0.81</td>
<td>17.55</td>
<td>82.10</td>
<td>16.77</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>46.41</td>
<td>0.21</td>
<td>17.20</td>
<td>78.69</td>
<td>16.44</td>
</tr>
<tr>
<td>5 0.17</td>
<td>41.76</td>
<td>-0.62</td>
<td>16.85</td>
<td>75.25</td>
<td>16.12</td>
<td>25.42</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>45.00</td>
<td>-0.51</td>
<td>17.35</td>
<td>80.80</td>
<td>16.75</td>
</tr>
<tr>
<td>1 0.32</td>
<td>40.25</td>
<td>0.21</td>
<td>17.00</td>
<td>78.45</td>
<td>16.42</td>
<td>25.42</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>35.50</td>
<td>0.61</td>
<td>16.65</td>
<td>75.06</td>
<td>16.12</td>
</tr>
<tr>
<td>5 0.17</td>
<td>30.75</td>
<td>-0.72</td>
<td>16.26</td>
<td>71.67</td>
<td>15.77</td>
<td>25.42</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>30.00</td>
<td>-0.51</td>
<td>16.85</td>
<td>75.25</td>
<td>16.75</td>
</tr>
<tr>
<td>3 0.17</td>
<td>25.25</td>
<td>0.21</td>
<td>16.50</td>
<td>72.86</td>
<td>16.42</td>
<td>25.42</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>20.50</td>
<td>0.61</td>
<td>16.15</td>
<td>69.45</td>
<td>16.12</td>
</tr>
</tbody>
</table>

Mean values of six replicates.

Fig. 1—Blanching time, high hydrostatic pressure (HHP) treatments (10 min holding time) and residual polyphenoloxidase (PPO) activity in banana puree.
activity in banana puree during HHP treatments. However, only when a 7 min steam blanch was followed by a 689 MPa pressure treatment, did the residual PPO activity in banana puree reach <5%.

Blanching time affected (p<0.05) the color parameters of the banana purees (Table 1). For each blanching time, the initial color parameters were not different (p>0.05) among treatments, including the purees without HHP. High pressure treatment preserved the initial color of the banana purees; however, during storage several color changes occurred. Since the banana purees initial color depended on blanching time, a normalized browning index (ΔBI) was calculated as the difference between the initial BI and the BI at selected times (t) during storage for each treatment. For ΔBI changes in the blanched and blanched-HHP treated banana purees during storage at 25°C, an induction period (ΔBI>0) was found dependent on blanching time and application of HHP treatment. After the induction period, ΔBI was linear with a positive slope, until ΔBI was 46–47. Considering the linear portion of increasing ΔBI, a linear regression of ΔBI vs time was performed for each treatment to calculate browning rates (ΔBI/day).

The color changes during storage of banana purees confirmed that residual PPO activity results in enzymatic browning of banana puree. The induction period to observe appreciable (ΔBI>0) changes in color as well as rate of browning thus depends on residual PPO activity. Longer induction times and slower browning rates were found with decreasing residual PPO activity in the banana purees (Fig. 2). Long blanching time followed by a 689 MPa pressure treatment, resulted in lengthy browning induction times and reduced browning rates (Table 2). A 3 min or longer blanching time reduced (p<0.05) the browning rate. Also, HHP treatment at 689 MPa for 10 min reduced (p<0.05) banana puree browning rates compared to HHP treatments at 517 MPa for 10 min, or no pressure treatment. Although a notable reduction of banana puree PPO activity was observed when a 7 min steam blanch was combined with a 689 MPa treatment for 10 min, the residual PPO activity (≤ 5%) was sufficient to initiate browning, which was noticeable after 6 days of storage at 25°C.

CONCLUSIONS

MICROBIOLOGICALLY STABLE BANANA purees were obtained by the addition of 1000 ppm potassium sorbate or the application of HHP at 517 or 689 MPa for 10 min. Reduced PPO activity in banana puree was obtained with HHP treatment and a short steam blanching pre-treatment. Thus, browning of banana puree during storage can be diminished to extend the acceptable shelf life during storage at 25°C. The resistance of PPO to HHP at ambient temperatures was also confirmed. Consequently, applications of high pressures to control enzymatic browning reactions in fruit products must be accompanied by other factors effective in controlling enzyme activity. These include blanching, a_s, pH, certain additives, elevated temperatures during pressure treatment and/or refrigerated storage.

REFERENCES

Ms received 4/10/98; revised 6/29/98; accepted 7/6/98.

This work was funded by the Bonneville Power Administration (U.S. Dept. of Energy), Electrical Power Research Institute (EPRI), Washington State University IMPACT Center, and Sistema Ignacio Zaragoza (SIZA) from CONACyT (Mexico). Author Palou gratefully acknowledges the financial support for his doctoral studies from the Fulbright CONACyT (Mexico)/ Institute of International Education (IIE) Fellowship Program, and Universidad de las Américas-Puebla.