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ABSTRACT
Samples of beef (32), lamb (33) and 5%, 10% and 20% (w/w)
lamb-in-beef mixtures (33 each) were minced and reflectance
scanned in the visible, near and mid-infrared spectral re-
gions. Partial least squares (PLS) regression models were
developed to predict percentage lamb content using each
spectral region alone and combinations of all three. The most
accurate models combined mid-IR (800-2000 cm -1) and near
IR (1100-2498 nm) spectral data following 2 nd derivatization;
standard errors of prediction of 0.91% (0–20% range in lamb
content) and 4.1% (0–100% range in lamb) were obtained.
This technique may be useful for screening such meat mix-
tures.
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INTRODUCTION
MEAT AUTHENTICITY IS OF CONSIDERABLE CONCERN TO CONSUM-
ers and retailers (Hargin, 1996; Lumley, 1996). Partial substitution of
a high value meat with one of lower value or quality is adulteration and
may pose religious or potential health problems. While speciation is
apparent when meat is examined in large pieces, after mincing it be-
comes difficult to establish species without sophisticated analytical
procedures. Techniques for this purpose have included capillary gas
chromatography of lipid fractions (Saeed et al., 1986), electrophoretic
separation of proteins (Barai et al., 1992; McCormick et al., 1992;
Skrökki and Horni, 1994) , immunological procedures (Pickering et
al., 1995) and DNA-based methods (Ebbehoj and Thomsen, 1991a,
b). None of these approaches is rapid and they all require sophisticat-
ed laboratory procedures.

Visible and infrared spectroscopic procedures are rapid and non-
destructive. Near-infrared (NIR) spectroscopy has found consider-
able application in the food and agricultural industries (Williams and
Norris, 1987; Downey, 1996) and the utility of mid-infrared (MIR)
spectroscopy in these sectors has also been reported (Wilson, 1990;
Lai et al., 1994; Kemsley et al., 1996). In studies of meat authenticity,
work on discriminating between fresh and previously-frozen beef
using NIR (Downey and Beauchêne, 1997a,b; Thyholt and Isaksson,
1997) has been described. A feasibility study on the application of
MIR to determine the freshness and speciation in pork, chicken and
turkey meats has been published (Al-Jowder et al., 1997). A prelimi-
nary study into the discrimination of raw chicken, pork and turkey
meats using visible, near and mid-infrared spectroscopic techniques
has also been reported (Rannou and Downey, 1997).

In addition to confirming the identity of mixed cuts of ground
meat, a need exists for the quantification of meats in blended materials.

Both near and mid-IR spectral regions have been applied separately to
this type of study. NIR has been used in the case of coffee varietal
mixtures (Downey and Spengler, 1996) and mid-IR for the quantifi-
cation of chicken/turkey blends (Al-Jowder et al., 1997). An investi-
gation has been reported on combined spectral regions for determin-
ing qualitative (Downey et al., 1997) and quantitative (Reeves, 1996)
authenticity. The data in each spectral region are related but not identi-
cal and their combination may provide a synergistic advantage to
spectroscopic analysis. Our objective was, therefore, to investigate
such an approach based on mixtures of lamb and beef.

MATERIALS & METHODS

Meat samples
Beef (n 5 32) and lamb (n 5 33) samples were purchased from

local retail outlets over a period of 10 weeks in 1997. For beef sam-
ples, slices of round steak (m. semimembranosus ~150g) were used.
Loin chops (m. longissimus dorsi) were used for the lamb samples.
Excess surface moisture was removed by blotting with paper towels.
Skin, bone, fatty tissue, connective tissue and visible bloody tissue
were removed from each sample to ensure the highest possible quan-
tity of lean meat. Samples were cut into small cubes (~1 cm3) to
facilitate mincing. Single species samples were minced using a model
R301 ultra (Robot Coupe SA, Vincennes, France) for 15s each. The
mincing bowl was carefully wiped with a tissue paper between sam-
ples of the same species while between different species or admix-
tures it was washed with warm water and a household detergent. In
addition to the 100% beef and 100% lamb samples, a series of mixed
species samples was prepared. Mixtures (33 samples of each) of 5%
lamb:95% beef, 10% lamb:90% beef and 20% lamb:80% beef (w/w)
were produced by weighing samples of cubed beef and lamb, placing
both in the blender and mincing for 20s to ensure a homogeneous
mixture. Once minced, samples were placed in covered plastic con-
tainers and stored at 48C.

Temperature was not controlled during mincing but the bowl was
allowed to cool between samples and especially after washing. Spec-
tra were collected on the day of comminution; ground meats were
stored at 4°C throughout this period and removed only for spectral
collection.

Spectroscopic measurements
Combined visible and near infrared spectra were collected in re-

flectance mode using a model 6500 instrument (NIRSystems Inc.,
Silver Spring, MD) over the wavelength range 400–2500 nm at 2 nm
intervals. Spectrophotometer control and spectral file management
were performed using NIRS3 software (version 3.10; ISI Internation-
al, Port Matilda, PA). Minced meat samples were placed in polyethyl-
ene bags; filled sample bags were set into a high fat/moisture cell (~10
cm long) which was mounted in a sample transport module. During
the scanning operation, this cell was moved at constant velocity past
the outlet slit of the spectrophotometer; 25 separate scans were collect-
ed during this movement and averaged after which the mean spectrum
of a reference ceramic tile (16 scans) was recorded and subtracted
from the mean sample spectrum.
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Mid-infrared spectra were recorded on an Infinity Series Fourier-
transform spectrophotometer (ATI Mattson, WI) using an attenuated
total reflectance (ATR) sample accessory. Instrument control and file
manipulation were by WinFirst software. Minced meat samples were
carefully layered onto the ATR crystal so as to ensure even and inti-
mate contact. Spectra were recorded over the range 640–4000 cm-1

(15,625–2500 nm) with a resolution of 8cm-1; 64 interferograms were
co-added before Fourier transformation. Only data from the “finger-
print” region (800–2000 cm21; 12,500–5000 nm) were used; this
restriction accelerated data processing and used spectral regions in
which the most applicably distinguishing molecular absorptions oc-
curred.

Multivariate data compression and derivatization
NIR binary spectra were imported into The Unscrambler software

(vs. 6.1;CAMO A/S, Trondheim, Norway) via a supplied conversion
program; mid-IR spectra were exported from WinFirst as JCAMP.DX
files (Rutledge and McIntyre, 1992) and ported directly into Un-
scrambler using a supplied macro routine. Quantitation was attempted
by partial least squares regression (PLSR) using raw spectral data and
data pre-treated by the Norris derivation and both 1st and 2nd deriva-
tive treatments. Partial least square regression is used to reduce multi-
collinearity and dataset size encountered in datasets such as NIR spec-
tra. Spectral matrices are decomposed into a reduced number of or-
thogonal (i.e. uncorrelated) components or loadings; these loadings
describe the main variation in both spectral and associated composi-
tional data matrices (Martens and Naes, 1989; Naes and Isaksson,
1992). Thus, while in the case of raw NIR spectra, each sample is
represented by a value at each of 1050 wavelengths (variables), in the
PLS-treated data, spectra are condensed to be represented by single
values on around 20 or fewer newly created axes. These values may
then be input into a regression procedure with considerably less like-
lihood of overfitting (less chance of modeling spurious variations or
noise in the dataset). Prior to statistical analysis of merged spectral
data sets, variables were normalized to unit variance by dividing each
absorbance value by the standard deviation of absorbance at the ap-
propriate wavelength. A potential danger with PLS regression is that
of over-fitting the model. This would have the effect of producing an
optimistic model on the set of data used for calibration but the model
would not perform well on other datasets of similar material. With
limited sample numbers, the technique of full cross-validation was
utilized to minimize the likelihood of overfitting. Thus, a single sample
was removed from the sample set and a calibration developed on the
remainder; this calibration was then evaluated on the removed sample

and a prediction error calculated. The deleted sample was then re-
introduced, a second removed and the calibration and prediction pro-
cess repeated. This process was continued until every sample had
been used for both calibration development and evaluation.

 The individual prediction errors were then combined into a stan-
dard error of cross-validation  while the correlations between actual
and predicted lamb content were estimated from the  explained vari-
ance divided by the total variance for each model. In derivatization, the
actual absorbance value at a given wavelength was replaced by a value
which represented the rate of change of absorbance around that wave-
length (derivatization). This technique resolves overlapping  peaks
and removes linear baseline effects (Hruschka, 1987). Standard devi-
ations and  standard errors of prediction were then determined on the
measured/predicted spectra.

 RESULTS & DISCUSSION
NIR (FIG. 1) AND MID-IR (FIG. 2) SPECTRA FOR THE COLLECTION
of meat samples (beef, lamb and lamb-in-beef mixtures) were com-
pared. In the visible-NIR spectra, some apparent differentiation into
two bands occurred at wavelengths .1300 nm. The lower band com-
prised mainly lamb and lamb-in-beef samples, but a few beef samples
were also present. Thus, this apparent differentiation may be a matter
of physical sample effects (particle size distribution, sample packing)
rather than species chemical differences. In the mid-IR spectra, little if
any differentiation was visually detectable. Such spectral similarities
are common for NIR spectra. Complex multivariate mathematical tech-
niques are required to emphasise any differences which may exist.
However, considerable caution must be exercised in the development
and evaluation of such predictive models. As explained, cross-valida-
tion was implemented and applied to every sample in the calibration
and evaluation process to minimize any over-fitting of data.

We made implicit assumptions that (1) differences existed in the
chemical composition of beef and lamb and (2) that such differences
could be detected by spectroscopic techniques. It is generally accepted
that lean meat compositions of beef and lamb are relatively constant,
with the major source of variation relating to lipid content (Varnam
and Sutherland, 1995). Published analytical data for the two muscle
groups of animals produced in Ireland were not available. However,
general data for UK animals revealed that lean mutton and beef usual-
ly contain between 5 and 10% fat and that removing all visible fat can
reduce these values to as low as 2% for beef and 4% for mutton
(Varnam and Sutherland, 1995). Of perhaps greater importance is the
fact that the composition of fat in the two species is quite different,
especially with regard to C14:0, C16:0, C18:0 and C18:1 lipids. Myo-

Fig. 1—Visible-NIR spectra of entire meat sample collection. Fig. 2—Mid-infrared (fingerprint region) attenuated total reflectance
spectra of entire meat sample collection.

Beef and Lamb Mixture Quantification . . .
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globin is the basic pigment in fresh meat and is found in three forms
i.e. reduced myoglobin, oxymyoglobin and metmyoglobin. Meat myo-
globin content varies with species and also with age, sex and physical
activity (Hedrick et al., 1994; Lawrie, 1998). These chromophores
absorb in the visible wavelength and their presence was obvious in the
visible-NIR spectra (Fig.1). Protein, fat and water are detected by near
infrared spectroscopy at several wavelengths, principally: water (964,
1440 and 1960 nm), protein (908, 1018, 1510, 1980, 2050 and 2180
nm) and fat (928, 1037, 2310 nm) (Osborne and Fearn, 1986). In the
mid-infrared, absorbing frequencies for these components have been
less-well described although bands at 1650cm21 (water), 1740 cm21

(fat) and protein (1650 and 1550 cm21) have been reported (Al-Jowder
et al., 1997).

Near infrared spectral data
Predictive models for the estimation of lamb content in this sample

set were developed. The range of composition in the mixed samples
extended only up to 20% and the 100% lamb samples could unduly
influence the development of models through leverage effects. Thus,
experiments were performed using (a) the entire sample set and (b) the
100% beef and lamb-in-beef mixtures only. Additionally, three wave-
length ranges were separately investigated, i.e., 400–2498 nm, 400–
750 nm and 1100–2498 nm (Table 1).

Considering the complete sample collection, i.e., samples covering
the entire compositional range, the optimum model developed from
raw spectral data in the 400–2498 nm range produced a standard error
of cross-validation of 10.6 % (w/w) lamb using 10 PLS loadings. The
effect of each derivative mathematical pre-treatment was to reduce the
number of loadings required to produce the optimum model without
any major reduction in prediction error. Such a reduction may also
increase the robustness of the models. When spectral data covering
the visible range only (400–750 nm) were similarly treated, prediction
errors in the range 11.0 to 11.6% resulted. The optimum number of
loadings utilized was slightly lower than with the complete 400–2498
nm wavelength range. The lowest prediction accuracies were achieved
using the wavelength range 1100–2498 nm; these ranged from 12.4%
to a minimum of 6.7% after 2nd derivative pre-treatment. The number
of loadings required for these models did not exhibit the same de-
crease as the complete range but the numbers were not excessive.
Considering the rate of reduction in residual variance achieved by
modelling 2nd derivative data in the range 1100–2498 nm (Fig. 3), use
of a specific lower number of loadings would probably not be justi-
fied. Results for models developed using a restricted compositional
range by exclusion of the 100% lamb samples were also compared
(Table 1). In most cases, a larger number of PLS loadings was used by
the optimum models than when the unrestricted range was considered.
Additionally, correlation coefficients were slightly lower for models

generated using the restricted compositional range as we expected.
However, as before, the best predictive model was obtained using the
1100–2498 nm wavelength range and a 2nd derivative pre-treatment
(Fig. 4). The accuracy of lamb prediction achieved (SEP51.08%)
strongly suggests that this model should at least be useful as a screen-
ing method for mixture analysis.

Mid infrared spectral data
The performance of models developed using mid-infrared spectra

was compared (Table 2). Norris derivatization was not applied since it
requires an integer value for the between-data point gap and this did
not apply for mid-IR data. Considering samples covering the entire
compositional range, raw mid-IR data produced a model with about
the same predictive accuracy as the raw NIR and/or visible wave-
length ranges. This was achieved through use of a greater number of
PLS loadings (16) than the 10, 9 or 12 for 400–2498 nm, 400–750 nm
and 1100–2498 nm ranges, respectively. When mid-IR spectra were
derivatized, little or no change in predictive accuracy was noted. How-
ever, the number of terms required in optimal models was reduced to
10 (1st derivative) and 11 (2nd derivative), respectively. This was in
marked contrast to the visible and NIR wavelengths where the num-
bers of loadings and/or predictive accuracy achieved subsequent to
derivatization were decreased.Restricting the compositional range of
the meat samples to 0 to 20%(w/w) lamb again produced predictive
models with high correlation coefficients. They also required higher

Table 1—Prediction of lamb content using some near infrared wave-
length ranges, data pre-treatments and composition rangesa

Complete sample Collection without 100%
collection lamb samples

n SEP R n SEP R

400-2498 nm wavelength range
Raw data 10 10.6 0.96 20 3.0 0.92
Norris derivative  6 10.3 0.96 20 1.7 0.97
1st derivative  6 9.4 0.97 17 1.4 0.98
2nd derivative  5 9.6 0.97 14 1.8 0.97

400-750 nm wavelength range
Raw data 9 11 0.96 17 2.9 0.92
Norris derivative 7 11 0.96 14 3.6 0.88
1st derivative 5 11.4 0.95 18 2.4 0.94
2nd derivative 3 11.6 0.95 13 3.4 0.89

1100-2498 nm wavelength range
Raw data 12 12.4 0.94 20 2.8 0.93
Norris derivative 8 11 0.96 17 1.5 0.98
1st derivative 9 8.1 0.98 14 1.1 0.99
2nd derivative 10 6.7 0.98 10 1.1 0.99
an=number of PLS loadings; SEP=standard error of prediction using cross-validation;
R=correlation coefficient.

Fig. 3—Residual variance for NIR partial least squares regression model
(1100-2498 nm; 0-100% lamb; 2nd derivative data pre-treatment).

Fig. 4—Prediction of %lamb in beef and beef+lamb mixtures (1100-
2498 nm; 0-20% lamb; 2nd derivative data pre-treatment).



590 JOURNAL OF FOOD SCIENCE—Volume 64, No. 4, 1999

CHEM
ISTRY/BIOCHEM

ISTRY

Table 2—Prediction of lamb content using mid-IR fingerprint range
spectral data as related to data pre-treatments and composition
rangesa

Complete sample Collection without 100%
collection lamb samples

n SEP R n SEP R

Raw data 16 10.6 0.96 10 4.3 0.82
1st derivative 10 11.1 0.96 16 2.0 0.96
2nd derivative 11 9.8 0.97 12 1.9 0.97

an=number of PLS loadings; SEP=standard error of prediction using cross-validation;
R=correlation coefficient.

Table 3—Prediction of lamb content using combined NIR and midIR
fingerprint range spectral data as related to data pre-treatments and
composition rangesa

Complete sample Collection without 100%
collection lamb samples

n SEP R n SEP R

Entire NIR + FTIR (fingerprint) ranges
Raw data 10 10.2 0.96 9 4.4 0.81
1st derivative  6 7.4 0.98 10 1.06 0.99
2nd derivative  7 4.1 0.99 7 1.05 0.99

VIS (400-750 nm) + FTIR (fingerprint) ranges
Raw data 8 11.9 0.95 11 4.2 0.83
1st derivative 4 10 0.96 5 3.2 0.90
2nd derivative 5 7.9 0.98 4 3.3 0.90

NIR (1100-2498 nm) + FTIR (fingerprint) ranges
Raw data 9 13.4 0.93 8 4.7 0.78
1st derivative 6 8.5 0.97 10 1.1 0.99
2nd derivative 7 5.5 0.99 8 0.91 0.99

an=number of PLS loadings; SEP=standard error of prediction using cross-validation,
R=correlation coefficient.

Fig. 5—Prediction of %lamb in beef and beef+lamb mixtures (mid-IR
fingerprint region; 0-20% lamb; 2nd derivative data pre-treatment;
PLS regression model with 12 loadings).

Fig. 6—Prediction of %lamb in beef and beef+lamb mixtures (com-
bined NIR-mid-IR fingerprint region; 0-20% lamb; 2nd derivative
data pre-treatment; PLS regression model with 12 loadings).

numbers of loadings than was the case for the 0–100% compositional
range (Table 2; Fig. 5). Examination of the residual variance data for
these models revealed a smooth reduction up to very high numbers of
loadings and no clear indication appeared for the manual selection of
any specific model with fewer loadings.

Combined near and mid-infrared spectral data
Results from predictive models using combined and normalized

spectra and sub-sets of them were compared (Table 3).With samples
covering the entire range, the most accurate predictive model using
raw spectral data was that based on the complete spectral ranges. In
this case, a 10 loading model produced a standard error of prediction
of 10.2% lamb, very similar to the optimum model using 400–2498
nm data. The use of sub-sets of visible-NIR spectra generally pro-
duced optimal models using fewer loadings but the associated predic-
tive errors were .10.2%. In each of the three spectral combinations
(Table 3), the most accurate model was produced using a 2nd deriva-
tive data pretreatment. Greatest accuracy was achieved using both
entire ranges (standard error of prediction of 4.1% lamb in a 7 compo-
nent model). In the compositional range 0–20% lamb, the use of
derivative spectra also improved predictive accuracy. The visible-fin-
gerprint combination proved least applicable while the other two were
of comparable accuracy. There appeared to be a marginal gain by
using the NIR-fingerprint combination after calculation of a second
derivative. In this case, an 8 component model predicted lamb content
with a standard error of 0.9% (Fig. 6).

CONCLUSIONS
COMPARISON OF THE PERFORMANCE OF SEPARATE AND COMBINED
wavelength ranges indicated that for the 0-100% lamb range, the most
accurate predictive models were generated by the NIR-fingerprint
combination. Adding the fingerprint mid-IR data in all cases improved
the predictive accuracy over that of NIR or visible data alone. The

most accurate model predicted lamb content with a standard error of
prediction of 4.1% (w/w). With the narrower compositional range, the
combined spectral ranges proved more accurate than either alone. The
model of choice for maximum predictive accuracy was the 2nd deriv-
ative of combined NIR and fingerprint spectral data. The associated
standard error of prediction was 0.91% lamb. Results suggest that this
analytical approach may have the required accuracy and ease-of-use
for potential application by manufacturers and regulatory authorities.
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