
C74 JOURNAL OF FOOD SCIENCE—Vol. 70, Nr. 1, 2005
Published on Web 1/11/2005

© 2005 Institute of Food Technologists
Further reproduction without permission is prohibited

C: Food Chemistry & Toxicology

JFS C: Food Chemistry and Toxicology

Effect of Organic Farming Practices on the
Level of Latent Polyphenol Oxidase in Grapes
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Introduction

Organic food is an expanding sector of the agricultural industry
in many parts of the world, and it is possible to find organical-

ly produced food in most supermarkets in Europe and North
America.

The overall goal of organic farming is to use agricultural methods
that have the smallest impact on the environment and provide the
greatest benefit to people (Becharrell and MacFie 1991; Bourn and
Prescott 2002).

One main difference between organic and conventional farming
is in the use of fertilizers. The latter uses chemical fertilizers as well as
manure, compost, sewage sludge, and other soil amendments,
whereas most certified organic farming allows only the use of ma-
nure, compost, and natural soil additives. A second difference be-
tween the 2 systems is the use of pesticides and herbicides. Conven-
tional farming, once again, uses any product available on the market
(not forbidden by law), whereas organic farming allows only a few
pesticides that are believed to leave no residue on the products, for
example, copper ammonium carbonate, copper sulfate, copper ox-
ychloride, sulfur, rotenone, pyrethrum, and soft soap (IFOAM 1998).

The application of pesticides and fertilizers has previously been
reported to modulate the biosynthesis and nature of phenolics in
plants (Lea and Beech 1978; Nicolas and others 1994; Daniel and
others 1999; Carbonaro and Mattera 2001), indirectly affecting the
enzymatic browning of fruits and vegetables (Martinez and Whitak-
er 1995). The degree of browning also depends on the presence of
oxygen, reducing substances, metallic ions, pH, temperature, and
the activity of different oxidizing enzymes, especially polyphenol
oxidase (PPO) (monophenol, dihydroxyphenylalanine: oxygen
oxidoreductase, EC 1.14.18.1), which is a copper-containing en-

zyme. It catalyzes 2 different reactions in the presence of molecular
oxygen: the hydroxylation of monophenols to o-diphenols
(monophenolase activity) and the oxidation of o-diphenols to o-
quinones (diphenolase activity) (Sánchez-Ferrer and others 1995).
In some plants, this enzyme exists in an inactive or latent state
(Mayer and Harel 1979; Moore and Flurkey 1990; Sánchez-Ferrer
and others 1993a; Núñez-Delicado and others 1996) and is activat-
ed by a variety of treatments or agents, including acid and alkaline
shock (Kenten 1957), urea (Swain and others 1966), anionic deter-
gents such as sodium     dodecyl sulfate     (SDS) (Laveda and others
2000; Núñez-Delicado and others 2003), proteases (Laveda and
others 2003), and fatty acids (Golbeck and Cammarata 1981).

It is well known that grapes contain high polypohenol oxidase
activity (Valero and others 1988; Sánchez-Ferrer and others 1989b)
and that enzymatic browning occurs rapidly in the damaged berry
or after the crushing of fresh grapes for juice and wine production
(Singleton and Rossi 1965; Kidron and others 1978; Sánchez-Ferrer
and others 1989b). This reaction causes a change in the color and
the flavor of the juice and greatly diminishes the quality of the fi-
nal product (Valero and others 1988). Thus, to produce high-quality
wine, it is important to know how to control the level of this enzyme
in the grapes.

The objective of this work was to study the influence of organic
farming practices on the level of PPO expressed in Monastrell
grapes, a winemaking variety, compared with that expressed in
conventionally grown grapes. The influence of different activation
processes on the latent enzyme was also studied and compared.

Materials and Methods

Sampling and raw materialSampling and raw materialSampling and raw materialSampling and raw materialSampling and raw material
Monastrell grapes at vinification maturity, organically and con-

ventionally grown, were kindly supplied by San Isidro wineries
(Jumilla, Murcia, Spain). Organic grapes were grown under con-
trolled cultivation conditions in which only sulfur and cuprous ox-
ychloride were added to the soil, whereas in the case of convention-
ally grown grapes, sulfur, zinc, manganese, malathion, fenarimol,
fenitrotion, and pH regulator were added to plants.
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Grapes were picked from 3 single plantations of organic culture
and 3 single plantations of conventional culture. At each planta-
tion, 10 vines, situated at different places, were selected, and 0.5 kg
of grapes was harvested (at vinification maturity) from each of
them. Two mixtures were made, the 1st with grapes from each or-
ganic plantation and the 2nd with grapes from each conventional
plantation. These 2 mixtures were frozen at –80 °C until used as
PPO source. Samples of frozen grapes (50 g each) both from conven-
tional and organic culture types were picked at random to extract
PPO. All PPO extracts were made in triplicate.

ReagentsReagentsReagentsReagentsReagents
Biochemicals were purchased from Sigma (Madrid, Spain) and

used without further purification. Triton X-114 (TX-114) was ob-
tained from Fluka (Madrid, Spain) and condensed 3 times as de-
scribed by Bordier (1981), but using 100 mM sodium phosphate
buffer, pH 7.3. The detergent-rich phase of the 3rd condensation
had a concentration of 25% TX-114 (w/v). The TX-114 concentra-
tion was estimated from 278 nm absorption of dilute solution (A278

= 1.25 for 0.05%; w/v) (Werck-Reichart and others 1991). The phe-
nolic substrates 4-tert-butylcatechol (TBC), 4-methylcatechol
(4MC), and chlorogenic acid (CGA) were obtained from Fluka
(Madrid, Spain).

Enzyme purification of grape PPOEnzyme purification of grape PPOEnzyme purification of grape PPOEnzyme purification of grape PPOEnzyme purification of grape PPO
Grape PPO was extracted using a modification of the method

described earlier by our group (Sánchez-Ferrer and others 1989a).
A sample of 50 g of frozen grapes was thawed at room temperature
and homogenized for 1 min with 50 mL cold buffered 100-mM so-
dium phosphate (pH 7.3) containing 25 mM ascorbic acid and
serine protease inhibitors (1-mM phenylmethanesulfonyl fluo-
ride [PMSF] and 1-mM benzamidine hydrochloride), both of
which were added immediately before use. The homogenate was
filtered through 8 layers of cheesecloth and centrifuged at 4000 × g
for 10 min at 4 °C. The supernatant was discarded, and the precip-
itate was resuspended with 20 mL of 4% (w/v) TX-114 in 100 mM
sodium phosphate buffer (pH 7.3) for 15 min at 4 °C. This solution
was subjected to temperature-induced phase partitioning, and
the mixture was warmed at 37 °C for 15 min. During this time, the
solution became spontaneously turbid because of the formation,
aggregation, and precipitation of large mixed micelles of deter-
gent, which contained hydrophobic proteins, chlorophylls, and
phenolic compounds. This solution was centrifuged at 10000 × g
for 15 min at 25 °C. The detergent-rich phase was discarded, and
the clean detergent-poor supernatant, containing soluble grape
PPO, was used as the enzyme source. This enzyme solution was
stored at –20 °C.

Enzyme activityEnzyme activityEnzyme activityEnzyme activityEnzyme activity
Enzymatic activity was determined spectrophotometrically

(Varian, Cari 50-Bio, Victoria, Australia) at 400 nm with TBC (�400 =
1150/M/cm) (Sánchez-Ferrer and others 1993a). One unit of en-
zyme was defined as the amount of enzyme that produced 1 �mol
of the tert-butyl-quinone/min.

Unless otherwise stated, the standard reaction medium at 25 °C
contained 25 �g of protein, 10mM sodium phosphate buffer, pH
6.0, and 2.5mM TBC in a final volume of 1 mL. Each sample was
assayed in triplicate.

Optimum pHOptimum pHOptimum pHOptimum pHOptimum pH
pH studies were carried out using 10 mM sodium acetate buffer

(pH 3.0 to 5.5) and 10 mM sodium phosphate buffer (pH 6.0 to 7.5)
in the presence or absence of 3.5 mM SDS.

Optimal activation by SDSOptimal activation by SDSOptimal activation by SDSOptimal activation by SDSOptimal activation by SDS
Activation studies were carried out in the standard reaction

medium (1 mL) adding different detergent concentrations.

TTTTTrrrrrypsin activypsin activypsin activypsin activypsin activationationationationation
Activation studies were carried out by incubating 25 �g/mL

grapes PPO and 0.5 mg/mL trypsin for different times. After that,
the activated PPO activity was measured in the standard reaction
medium conditions in a final volume of 1 mL.

ElectophoresisElectophoresisElectophoresisElectophoresisElectophoresis
Sodium dodecyl sulphate–polyacrylamide gel electrophoresis

(SDS-PAGE) was carried out as described by Angleton and Flurkey
(1984). Samples were mixed with glycerol, SDS, and bromophenol
blue before being applied to 10% polyacrylamide gels. Electro-
phoresis was carried out for 1 h at 25 °C in a Mini Protein Cell (Bio-
Rad). The gels were stained for PPO activity in 100 mL of 10 mM
sodium acetate buffer (pH 5.0) containing 5mM L-3,4-dihydrox-
yphenylalanine (L-dopa) and 3mM 3-methyl-2-benzo-thiazolino-
ne hydrazone (MBTH) hydrochloride hydrate.

Protein determinationProtein determinationProtein determinationProtein determinationProtein determination
The protein content was determined according to Bradford’s dye

binding method, using bovine serum albumin (BSA) as a standard
(Bradford 1976).

Statistical analysisStatistical analysisStatistical analysisStatistical analysisStatistical analysis
The significance of the difference between means of PPO activity

in conventional and organic grapes was estimated by Student t-
test. These analyses were carried out using SPSS version 12 (SPSS
Inc., Chicago, Ill., U.S.A.).

Results and Discussion

Enzymatic browning of musts and wines is mainly dependent on
the oxidation of endogenous phenols by PPO (Sapis and others

1983). Mayer (1987) has reviewed the importance of this enzyme in
winemaking, which has attracted the attention of many investiga-
tors since the 1960s for many reasons: its kinetic parameters (Lern-
er and Mayer 1976; Sánchez-Ferrer and others 1988), its latency
(Sánchez-Ferrer and others 1989a), its location (Ivanov 1967), its
changes during maturation (Sánchez-Ferrer and others 1989b;
Valero and others 1989), and the best moment for harvesting
grapes to produce a high-quality wine without, or at least with re-
duced, enzymatic browning (Valero and others 1989).

In this work, PPO samples from organic and conventional Mo-
nastrell grapes, a Spanish winemaking variety, were partially puri-
fied using a modification of the method described by Sánchez-Fer-
rer and others (1989a), which consists of phase partitioning in
TX-114 (for details, see “Materials and Methods” section). The en-
zyme thus obtained was in a latent state and could be activated by
different methods (acid shocking, detergents, or proteases), which
is in agreement with data previously described (Sánchez-Ferrer
and others 1989b).

The partially purified conventional and organic Monastrell grape
PPO appeared as a single band in PAGE (Figure 1) when L-dopa
and MBTH were used as a substrate, in both cases. This result was
similar to that obtained for soluble potato PPO (Sánchez-Ferrer and
others 1993a), iceberg lettuce PPO (Chazarra and others 1996),
banana pulp PPO (Sojo and others 1998), and persimmon fruit
(Núñez-Delicado and others 2003). Moreover, Figure 1 shows the
same band in both cases, indicating the presence of the same PPO
isoenzyme in Monastrell grapes grown under conventional and
organic farming conditions.

http://www.ift.org
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When the PPO activity was studied with TBC at different pH
values in the absence of SDS, both conventional and organic grapes
showed an optimum pH at 4.0 (Figure 2a, filled symbols). These
data were in accordance with the optimum pH described for con-
ventional grape PPO (Sánchez-Ferrer and others 1989b). The low
pH optimum is a result of the enzyme being induced by acid shock-
ing. This low pH was displaced to pH 5.0 when the assays were con-
ducted in the presence of 0.1% SDS, in both cases (Figure 2a, open
symbols). This effect of pH displacement in the presence of SDS
has also been described with persimmon fruit latent PPO (Núñez-
Delicado and others 2003).

Figure 2a also shows that PPO activity in organic Monastrell
grapes (circles) was double (P < 0.05) that observed in conventional
Monastrell grape (squares), both in the presence or in the absence
of SDS. The highest value in the activation process was obtained at
pH 6.0 in both cases (Figure 2b), at which value the activation was
8.6-fold and 7-fold for organic and conventional Monastrell grapes,
respectively.

To further characterize the differences between the 2 types of
farming, the effect of SDS concentration was studied at pH 6.0. Fig-
ure 3 shows that the activation process was saturable, reaching its

maximum activation at 3.5 mM SDS in both organic and conven-
tional Monastrell grapes. Once again, PPO activity in the presence
of SDS was approximately 2 times higher in organic than in conven-
tional Monastrell grapes (P < 0.001).

This SDS activation was also dependent on the substrate used.
Three substrates, TBC, 4MC, and CGA, were tested (Table 1), a
clear dependence between the degree of hydrophobicity of the

Figure 2—(a) Effect of pH on Monastrell grape polyphenol
oxidase activity in 10 mM sodium acetate (pH 3.0 to 5.0),
10-mM sodium phosphate (pH 6.0 to 7.5). The reaction
medium at 25 °C contained 2.5 mM 4-tert-butylcatechol and
25 �g/mL of partially purified polyphenol oxidase (PPO).
Organic Monastrell grape PPO in the presence (�) or ab-
sence (�) of 3.5 mM SDS. Conventional Monastrell grape
PPO in the presence (�) or absence (�) of 3.5 mM sodium
dodecyl sulfate (SDS). (b) Effect of pH on SDS activation of
organic (�) and conventional (�) Monastrell grapes.

Figure 1—Sodium dodecyl sulphate-polyacrylamide gel
electrophoresis (10% gel) of (a) conventional Monastrell
grape polyphenol oxidase and (b) organic Monastrell grape
polyphenol oxidase, stained with 5mM L-3,4-
dihydroxyphenylalanine (L-dopa) and 2mM 3-methyl-2-
benzo-thiazolinone hydrazone hydrochloride hydrate in
sodium acetate buffer (pH 4.0).

http://www.ift.org
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substrate and the degree of activation being evident
(TBC > 4MC > CGA). The conformational changes produced by
the surfactant in the activation of latent PPO favor the access of the
hydrophobic substrates to the active center, as has been previous-
ly described for latent potato leaf PPO (Sánchez-Ferrer and others
1993b).

Finally, proteolytic activation was also studied in the presence of
0.5 mg/mL trypsin (Figure 4). The activation process was time-de-
pendent, reaching maximal activation when the incubation time
was 20 min. In the case of organic grapes, the latent enzyme was
activated 29-fold, which is almost double that reached in conven-
tional grapes (17-fold). The activity of trypsin-activated organic and
conventional latent PPOs was independent of pH from 3 to 7.5 (Fig-
ure 5a). However, the maximal proteolytic activation of both latent
PPOs was found at basic pH values (Figure 5b). In both organic and
conventional Monastrell grapes, the degree of activation obtained
using trypsin as activation agent was higher (2-fold to 3-fold) than
that obtained by pH or SDS.

In summary, this study revealed that organic and conventional
Monastrell grape PPO is in the latent state and can be activated by
different methods, such as with acid-shocking, SDS, and trypsin,
the last activation method being the most effective (29-fold or 17-
fold for organic and conventional grapes, respectively). In addition,
the high PPO activity present in organic compared with convention-
al Monastrell grapes could be the result of changes in phenolic
metabolism in plants grown in the absence of synthetic chemical
pesticides and most of the readily soluble mineral fertilizers, espe-
cially copper sulfate. This increase in PPO activity may contribute
effectively to disease resistance in organic farming via rapid oxida-
tion of phenols to quinines, thus inhibiting the polygalacturonase
of pathogens (Ohazurike and Arinze 1996).

Table 1—Sodium dodecyl sulfate (SDS) activation (-fold) of
polyphenol oxidase from organic and conventional
Monastrell grapes, using different substrates

4-tert-Butyl 4-Methyl Chlorogenic
catechola catecholb acidc

PPOd from organic
Monastrell grapes 8.6 5.5 3

PPO from conventional
Monastrell grapes 7 3.6 1.5

aAssayed in the standard reaction medium, in the absence or in the presence
of 3.5 mM SDS.
bAssayed in the standard reaction medium but using as substrate 2.5 mM 4-
methylcatechol, in the absence or in the presence of 3.5 mM SDS.
cAssayed in the standard reaction medium but with 2.5 mM chlorogenic acid,
in the absence or in the presence of 3.5 mM SDS.
dPPO = polyphenol oxidase.

Figure 3—Effect of sodium dodecyl sulphate (SDS) concen-
tration on Monastrell grape polyphenol oxidase activity. The
reaction medium at 25 °C contained 10 mM sodium phos-
phate buffer, pH 6.0, 2.5 mM 4-tert-butylcatechol, increas-
ing concentrations of SDS (0 to 10 mM) and 25 �g/mL of
partially purified polyphenol oxidase from organic grapes
(�) 25 �g/mL of partially purified PPO from conventional
grapes (�).

Figure 4—Effect of incubation time on the trypsin-medi-
ated activation of Monastrell grape polyphenol oxidase
(PPO). The reaction medium at 25 °C contained 10 mM
sodium phosphate buffer, pH 6.0, 2.5 mM  4-tert-
butylcatechol, and 25 �g/mL of organic Monastrell grape
PPO incubated with trypsin 0.5 mg/mL for different times
(�) or 25 �g/mL of conventional Monastrell grape PPO in-
cubated with trypsin at 0.5 mg/mL for different times (�).

Conclusions

In conclusion, the results presented in this article suggest that PPO
may be considered a specific endogenous marker for the differ-

entiation of organic from conventional grapes, as has been previ-
ously described for organic peaches and pears (Carbonaro and
Mattera 2001). These data indicate that wines obtained from or-
ganic grapes could be more oxidated than those obtained from
conventional grapes because of the highest PPO activity observed
in organic grapes.
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Figure 5—(a) Effect of pH on trypsin-activated Monastrell
grape polyphenol oxidase (PPO), in 10 mM sodium acetate
(pH 3.0 to 5.0) and 10 mM sodium phosphate (pH 6.0 to
7.5). The reaction medium at 25 °C contained 2.5 mM 4-
tert-butylcatechol and 25 �g/mL trypsin-activated organic
grape PPO (�) or 25 �g/mL trypsin-activated conventional
grape PPO (�). (b) Effect of pH on trypsin activation of or-
ganic (�) and conventional (�) Monastrell grape.
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