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A matrix-considering in-house validation concept for
analytical methods is presented which takes into account
the uncertainty due to matrix- and time-induced
deviations. It is based on a variance component model for
univariate quantitative measurement data that can be
adapted to both screening and confirmation methods and
to both zero-tolerance and threshold decisions. The model
allows the calculation of critical concentrations for given
a-errors and the calculation of the corresponding power
function to evaluate the performance of an analytical
method. The model is applied to a real-life validation
experiment.
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In view of the globalization of markets, the reliability of
analytical methods used for regulatory purposes (e.g., food
control, environmental monitoring) has become increasingly
important. To protect consumers from intolerable health
hazards and to prevent market distortions, the competent
authorities have to guarantee the comparable, reliable control of
established threshold levels. One approach to ensure the
analytical quality is to recommend or even to require the use of
precisely described methods as the Codex Alimentarius Com-
mission1 and the US Food Safety and Inspection Service2 do,
whereas another approach is to establish minimum quality
criteria for the different analytical techniques as the European
Union3 does in the field of veterinary drug residue control.

A widely accepted prerequisite for the application or even
recommendation of an analytical method is its validation.1,4–8

Although virtually all procedures for the validation of methods
are based on the determination of specific performance
characteristics, e.g., the limits of ‘detection and quantifica-
tion’,7–13 there is no commonly accepted validation procedure
for their assessment. Even within the concepts that are based on
the construction of a calibration curve,7,8,12 there is no
consensus about the choice of calibration samples and the
number of replicates.

Most validation procedures include the performance of a
collaborative study1,4,6–8,12–16 to evaluate the reproducibility of
the method, which means that enormous efforts have to be
made. Consequently, the availability of fully validated methods
for regulatory purposes is limited.

In order to gain flexibility and to reduce time and costs, an in-
house validation procedure for the processing of quantitative
data is presented here that takes into account matrix- and time-
induced deviations based on a statistical variance component
model. By applying this model to a real-life validation
experiment, the practicability of the in-house validation proce-

dure is demonstrated. The reliability of the examined method is
evaluated by calculating the critical concentrations for given a-
and b-errors.

Requirements for validation procedures in trace analysis

A basic requirement for analytical methods used in trace
analysis and especially in residue control is their ability to
distinguish between upwards and downwards deviations from a
threshold level in accordance with a defined error probability.
Therefore, the method should show as low a variance as
possible so that these decisions can be made with the
appropriate sharpness and security. At the beginning of the
validation, preliminary examinations have to be carried out to
determine the substances detectable by the method, the present
and potential future matrix populations of the laboratory and the
measurement range to which the validation will apply. Any
change of the matrix resulting, for instance, from different
origins of the samples or different freshness or storage
conditions, could have an unexpected influence on the analysis
and therefore reduce the evidential value of the results. Hence it
has to be defined in advance under which conditions the method
will be considered to be valid. Most validation proce-
dures1,5–11,13–16 assume that the distribution of the measurement
values of the matrix of the unknown sample equals the
distribution of the measurement values of the matrix of the
calibration samples. Hence a huge amount of laboratory work
and costs would be unavoidable if one of these procedures was
to be repeated for each matrix being considered. These
considerations suggest an investigation of the matrix variability,
which so far has not been undertaken.

Additional variability caused by time-related effects such as
measurement series deviations due to instrument instabilities
can occur. This additional variability must also be taken into
account when performance characteristics are determined.
Usually, attempts are made to compensate for this by the
construction of a calibration curve within each measurement
series and by the addition of an internal standard if available.
However, even when internal standards are used, time effects
may be observed. Therefore, the validity of a validation
calibration curve should be guaranteed for a period to be defined
by the validation procedure itself.

Another crucial point in validation is the determination of the
blank value. For several analytical techniques, e.g., mass
spectrometry, it is problematic to determine. Establishing a
virtual blank value by means of linear extrapolation of the
calibration curve6–8 is questionable, because adsorption or
contamination effects, especially in the region of the blank
value, may result in a pronounced non-linear course of the
calibration curve. It seems more reasonable to adapt the model
to the purpose of analysis.
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Finally, the reliability of the analysis should be sufficient for
court proceedings, i.e., the underlying concept should ade-
quately reflect the true conditions. On the one hand, possible
compensation claims resulting from false-positive decisions (a-
error) have to be excluded to the greatest extent possible. On the
other hand, consumer safety has to be guaranteed, i.e., virtually
all contaminated samples should be discovered. The analytical
strategy used so far to comply with these requirements is a
combination of screening and confirmatory methods.17 One
requirement for a successful screening method is the minimisa-
tion of the false negative rate (b-error); for a satisfactory
confirmatory method, it is the minimisation of both the b- and
the a-error. Consequently, the intended use of a method, e.g.,
screening or confirmation, influences the validation criteria.
Definition of the maximum tolerated error probabilities for the
analytical methods applied is a prerequisite for comparability of
the analytical results. The different analytical communities, e.g.,
environmental monitoring, residue control, food control, phar-
maceutical or forensic chemistry, should agree on error
probabilities for common use in their respective fields.

Statistical model

For the validation of an analytical method, the determination of
the method-specific parameters has to be based on a statistical
model that reflects the existing analytical conditions, e.g.,
system instabilities, matrix variability and the distribution of
measurement values.

In the model presented (see also Appendix), it is assumed that
the fundamental relationship between measurement Y, concen-
tration xi and matrix j is given by

Yij = m(xi) + ãj + b̃j x + eij, (1)

where x1 @ x2 @ ... @ xI represent the spike concentrations,
i = 1, ..., I denote the spike levels and j = 1, ..., J denote the
matrix of the calibration sample. Y may represent the measured
raw values (height or area of peaks) and also estimated
concentration values obtained using a standard calibration curve
established within the measurement series. m(x) is called the
overall calibration curve. It is assumed to be linear within the
calibration range, i.e., m(x) = a + bx within the interval [x1; xI].
The definition of the matrix levels j depends on the calibration
experiment; j could, for instance, represent an animal or a
species, or different parts of an animal such as muscle or liver.
Additionally, each j could represent another measurement
series. A clear definition of the different j levels is essential for
the validation procedure. The measurement error is denoted by
eij, which represents the variability of Yij when matrix j is fixed.
The interpretation of eij is closely related to the experiment and
to the definition of j. In either case, eij is a random variable with
zero mean. Its variance can depend on concentration xi and on
the level j, i.e., on compartments, species or instrument
conditions. In the model presented, the variance of eij is
assumed to be constant, Var(eij) = s0

2, ãj and b̃j are random
effects (possibly correlated) with zero mean and variances sa

2

and sb
2, respectively. Additionally, all random variables, eij, ãj

and b̃j, are assumed to have a normal distribution.
If estimates âj and b̂j of the parameters aj = a + ãj and bj =

b + b̃j are available, the concentration x of the unknown sample
with signal Y can be estimated from x = (Y 2 âj)/b̂j. However,
the matrix-specific calibration curve normally fails for practical
reasons such as the availability of sample material. Therefore, in
the model presented, the overall calibration curve m(x) is used,
where m(x) determines the relationship between x and Y on
average over all matrices of the defined population. The
contaminant concentration x of the unknown sample with signal
y will be estimated using x = (y 2 â)/b̂, where â and b̂ denote
the estimated coefficients of the overall calibration curve.

Calibration experiment

The model was applied to a quantitative method used in
veterinary drug residue control. In order to assess the influence
of different operational conditions (freshness, storage condi-
tions) and different matrices (muscles of calves, cows, pigs and
turkeys from different feeding conditions with different fat
contents), 26 calibration runs were performed, each at four
concentration levels, x = 0.3, 0.6, 0.9 and 1.2 mg kg21

chloramphenicol (CAP), in muscle. The operating conditions
and the matrices were chosen randomly. In the European Union
the use of CAP in food-producing animals is banned and
therefore the validation had to be carried out around the zero
concentration range.

The measuring results were obtained by means of a sample
preparation consisting of several liquid- and solid-phase
extraction steps followed by a derivatisation step to prepare the
sample for GC–MS analysis. Deuterated chloramphenicol-d5
was used as internal standard.

Complying with the prerequisite of an unambiguous identif-
ication of an analyte, a measuring result was only considered
acceptable if the identification criteria for GC–MS had been
fulfilled, e.g., the presence of four characteristic fragments
(diagnostic ions) of the analyte within given margins at the
correct retention time.3 Fragmentation took place in a negative
chemical ionisation source. The reactant gas was ammonia.
Quantitative evaluation was carried out by using the internal
standard according to the peak-area mode customary in gas
chromatography. For this purpose, the area ratio of the most
intense ion of the analyte and of the internal standard,
respectively, were used.

Statistical analysis of the calibration experiment

For each calibration run j the corresponding calibration function
âj + b̂jx and the residual standard deviation sj were calculated.
Table 1 gives the results.

The measurement data and the calibration functions âj + b̂jx
of the 26 calibration runs are presented graphically in Fig. 1.
There was no indication that the measurement data were not a
random sample from a normal population. The influence of
different matrices and different operating conditions on the
constant âj and the slope b̂j was examined by several t-tests (Fig.
2). No significant effect of different matrices or operating
conditions was detected (details omitted). If there were no
effects resulting from different matrices, operating conditions or
calibration runs, the theoretical (unknown) calibration function
of run j at concentration x would equal the theoretical overall
calibration function:

Yij = aj + bjxi + eij = a + bxi + eij

where eij denotes the random error. Applying this restricted
model, the (1 2 a) prediction interval for measurement values
at concentration x could be calculated:
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denotes the information matrix for (âj, b̂j); t52.1–a/2 denotes the
1 2 a/2-quantile of the t-distribution with 52 degrees of
freedom (which are derived from the 52 degrees of freedom of
s0

2). The resulting 98% prediction interval is shown in Fig. 3.
Ten out of the 4 3 26 measurement values are not in the
interval, which is far more than 2%. It can be concluded that
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there are additional sources of error which model (1) does not
take into account.

For a more detailed analysis of the error, the scatter of the 26
calibration functions has to be investigated. These calibration
functions can be written

âj + b̂jx = aj + bjx + estimation error

where âj + b̂jx denotes the observed (estimated) calibration
function and aj + bjx denotes the unknown, theoretical
calibration function at calibration run j. The variance of the
observed calibration function is the sum of the variance of the
theoretical calibration function and the variance of the estima-
tion error, i.e.,

Var(âj + b̂jx) = Var(aj + bjx) + Var(estimation error)

where j is assumed to be randomly chosen. The estimation error
refers to the estimation of the calibration function at concentra-
tion x for one calibration run. Its variance can be computed as
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0 denotes the variance of the error eij. Therefore, the

variance of the theoretical calibration function aj + bjx can be
estimated:
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âj + b̂jx denotes the empirical variance of the estimated

calibration functions and s2
0 = 1

26∑s2
j denotes the residual

variance. Hence an overall calibration function can be estimated
as
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The respective variances were calculated at the limits,
x = 0.3 mg kg21 and x = 1.2 mg kg21, and at the centre of the
calibration range, x = 0.75 mg kg21. The results are given in
Table 2.

At concentration x = 0.3 mg kg21, the empirical variance
s2

âj + b̂jx is slightly lower than the variance of the estimation error.
Since variances are non-negative, the variance of the calibration
function at x = 0.3 mg kg21 can be estimated, Var(aj + bj3 0.3)
≈ 0, i.e., there is no indication that the calibration function at
the lower limit of the calibration range is dependent on the run
j. In contrast to this result, at concentration x = 0.75 mg kg21,
the empirical variance is significantly higher than the variance
of the estimation error, i.e., Var(aj + bj3 0.75) > 0. This result
is in accordance with the observed scatter of the calibration
functions (Fig. 1). Apparently the dispersion becomes larger at
higher concentrations. This is just an empirical result—
analytical implications will not be discussed in this paper. Other
analytical methods, matrices and substances may yield different
results.

Based on model (1), the (1 2 a) prediction interval for the
measurement values can be recalculated. For this purpose, the
variance of the theoretical calibration function aj + bjx has to be
taken into account. Then the (1 2 a) prediction interval for the
measurement values can be computed as
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The resulting 98% prediction interval is shown in Fig. 4. This
interval covers the empirical distribution of the measurement
values very well. This is a clear indication that the general
model proposed in this paper is adequate to deal with matrix-
and time-induced deviations.

Computation of the critical concentrations for banned
substances

Based on the assumption that the calibration function can be
extrapolated linearly, the critical concentration CCa could be
determined as illustrated in Fig. 5(a). As discussed above, this
assumption is, however, questionable. For confirmatory pur-
poses it may be more appropriate to assume a worst case
scenario, as shown in Fig. 5(b).

Table 1 Results of the calibration experiment

Run No. 0.3 mg kg21 0.6 mg kg21 0.9 mg kg21 1.2 mg kg21 âj ^bj sj

1 0.36 0.66 1.06 1.31 0.035 1.08 0.0433
2 0.28 0.62 0.90 1.24 20.030 1.05 0.0190
3 0.31 0.65 0.92 1.09 0.090 0.87 0.0603
4 0.31 0.61 0.88 1.12 0.055 0.90 0.0212
5 0.30 0.66 0.95 1.26 0.00 1.06 0.0227
6 0.35 0.72 1.05 1.27 0.075 1.03 0.0542
7 0.31 0.64 0.99 1.31 20.025 1.12 0.0087
8 0.32 0.67 0.87 1.26 0.025 1.01 0.0556
9 0.26 0.58 0.92 1.20 20.050 1.05 0.0190

10 0.31 0.64 0.84 1.19 0.035 0.95 0.0448
11 0.33 0.62 0.90 1.19 0.045 0.95 0.0032
12 0.33 0.69 0.86 1.21 0.070 0.94 0.0586
13 0.28 0.60 0.89 1.17 20.005 0.99 0.0145
14 0.32 0.67 0.93 1.17 0.070 0.94 0.0404
15 0.36 0.50 0.88 1.13 0.045 0.90 0.0702
16 0.35 0.69 1.03 1.30 0.045 1.06 0.0271
17 0.28 0.57 0.91 1.24 20.055 1.07 0.0170
18 0.32 0.58 0.87 1.14 0.040 0.92 0.0087
19 0.32 0.69 0.88 1.25 0.040 0.99 0.0569
20 0.32 0.70 1.02 1.19 0.075 0.98 0.0756
21 0.31 0.60 0.75 1.14 0.040 0.88 0.0697
22 0.35 0.66 1.10 1.27 0.045 1.07 0.0803
23 0.29 0.62 0.92 1.25 20.025 1.06 0.0095
24 0.31 0.73 0.91 1.30 0.025 1.05 0.0719
25 0.37 0.74 1.04 1.45 0.015 1.18 0.0318
26 0.29 0.56 0.89 1.28 20.070 1.10 0.0424
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If the measured value exceeds the critical concentration, it
will be concluded that the analyte is detected. The error
probability a for making a wrong decision (false-positive rate)

Fig. 1 Calibration functions of the calibration experiment.

Fig. 2 Flow chart of the preliminary analysis of the data of the calibration
experiment.

Fig. 3 98% prediction interval (without matrix- and time-induced
deviations).

Table 2 Variance components of the estimated calibration functions

Concentra-
tion x/
mg kg21 s2

âj + b̂jx Var(estimation error) Var(aj + bjx)

0.3 0.00119 0.00148 0
0.75 0.00236 0.00053 0.00188
1.2 0.00619 0.00148 0.00471

Fig. 4 98% prediction interval (with matrix- and time-induced devia-
tions).

Fig. 5 (a) Graphical determination of CCa using linear extrapolation. (b)
Graphical determination of CCa for confirmatory purposes.
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depends on the prediction level. For a 98% prediction interval
the error probability is 1%. 

For the method examined, the critical concentration is CCa
= 0.42 mg kg21, with an underlying error probability of
a = 0.01. According to the model presented for confirmatory
purposes (type II calibration curves, see Appendix), it is clear
that the CCa cannot be smaller than the lowest concentration in
the calibration experiment. This has to be considered when
defining the calibration points during the preliminary exam-
inations.

Each analytical method involves not only a false-positive rate
but also a false-negative rate which depends on the true
concentration x of the analyte. The false-negative rate
b = 1 2 p(x) can be calculated from the power function p(x),
which describes the probability of detecting the analyte when its
true concentration is x. It characterizes the performance of the
analytical method for detecting the analyte. The derivation of
the power function will not be discussed in detail here. It is
obvious that it depends on the decision criterion for the
detection, and hence on the critical concentration CCa and on
the false positive rate a.

For confirmatory purposes, the power function can be
calculated:
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where x1 denotes the lowest concentration level in the
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Figure 6 shows the power function calculated by means of the
measuring results of the calibration experiment. As illustrated,
the power function provides the critical concentration CCb at
which the false-negative rate equals b, where b = 0.01 or
b = 0.05 is given. The calculated values for the examined CAP
confirmatory method are CCb = 0.50 and 0.55 mg kg21 for
b = 0.05 and 0.01, respectively. The CCb can be used as a
validation criterion: as long as CCb is below a given limit, it is
guaranteed that for true concentrations above the limit the false-
negative rate does not exceed b.

Discussion

In trace analysis, the analytical results are usually affected by
the type of matrix or by time-related conditions of the analytical

system. A validation based on the presented variance compo-
nent model refers not only to samples that correspond to the
particular matrix used in the validation procedure but also,
within certain time limits, to all future samples belonging to the
defined population.

As demonstrated in the Appendix, the model can be adapted
not only to the different performance levels of methods,
screening or confirmatory, but also to zero-tolerance and
threshold decisions based on quantitative measurement data.

The proposed concept of a matrix-considering in-house
validation procedure should be considered with regard to the
current discussion about the uncertainty of measurement. At
present, there are different approaches under discussion about
how to quantify uncertainty.18,19 The uncertainty of a measure-
ment can be defined ‘as the interval on the measurement scale
within which the true value lies with a specified probability,
when all sources of error have been taken into account’.19 By
taking into consideration matrix- and time-induced deviations,
as done in the model presented, essential components of the
uncertainty resulting from the systematic error are already
covered by applying the in-house validation concept. By a
recently published approach to the quantification of un-
certainty,19 the analytical error can be broken down into four
components: the method bias, the laboratory bias, the run bias
and the random measurement error.19 According to the concept
presented, the run bias refers to the time-induced deviations and
the method bias is additionally split into two components, the
matrix-induced deviations and remaining method-induced bi-
ases. The decomposition of the uncertainty of a measuring result
can be illustrated by the uncertainty tree in Fig. 7. It should be
noted that neither collaborative studies nor in-house validation
procedures are able to cover all components of uncertainty. In-
house validation procedures do not cover the laboratory bias,
whereas collaborative studies do not cover matrix-induced
deviations. (There are some hints that the laboratory bias in
comparison with the time effects can sometimes be neglected.20

When considering the laboratory bias as less important than
other error components, it could be sufficient to determine it
within proficiency tests, which are necessary anyway for the
continuous assessment of the technical competence of the
participating test laboratories.)

Conclusion and outlook

The application of the concept presented provides the analyst
with comprehensive information about the performance of the
method in question. Critical concentrations and error probab-
ilities are calculated by means of a power function, which is
based on a variance component model. Ongoing validation

Fig. 6 Power function of the examined CAP confirmatory method. Fig. 7 Uncertainty tree.
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experiments using different matrices, substance groups and
analytical techniques are expected to confirm the practicability
of the presented concept. Future work will be dedicated to
developing the necessary statistical procedures for the integra-
tion of this validation concept into the overall framework of
quality management.

Financial support by the European Commission is gratefully
acknowledged.

Appendix: derivation of formulae

Calibration function

The statistical model considered in this paper is

Y = Yij = m(xi) + ãj + b̃jxi + eij (1)

where Yij denote the measurement value at contaminant level i,
i = 1, . . ., I and matrix j, j = 1, . . ., J. x1@ x2@ . . . @ xI denote
the contaminant values in the calibration experiment and ãj + b̃jx
represents the matrix specific correction term of the calibration
function m(x). The latter is assumed to be linear within the
calibration interval, i.e., m(x) = a + bx for x1 @ x @ xI. Out of
the interval two different extrapolations are applied. For
screening methods the curve will be linearly extrapolated (type
I calibration), as long as a + bx! 0, i.e., m(x) = max{a + bx, 0}.
For confirmatory methods (type II calibration) a worst case
scenario is considered:

    
m( )x
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The calculation of the critical concentration depends on the
assumptions concerning the calibration function and on the
threshold value. However, in each case it is based on a
significance test: The critical concentration represents the
measured concentration from which on the threshold value
xthreshold is exceeded significantly. The threshold value is
assumed to be greater or equal to zero. If it is zero (as in the
example presented), the significance test consists in investigat-
ing the question whether the substance can be detected in the
sample. However, one should take into account that the
threshold value could also be a target value or a maximum
admissible concentration.

The underlying test hypotheses can be formulated as
follows:

H0 : x @ xthreshold against H1 : x > xthreshold

where x denotes the unknown concentration of a sample with
measurement value Y. Additionally a modified threshold is
defined as

x
x
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which is equivalent to xthreshold with respect to the calibration
function, i.e., m(x0) = m (xthreshold).

According to the statistical model, the variance of the
measurement value Y = Y(x) at concentration x can be
written

Var(Y) = s2
0 + s2

1(x),

where s2
1(x) denotes the variance of the matrix-induced error

and s2
0 denotes the measurement variance. In practice, these

variance components are unknown and have to be estimated.
For the moment we assume that they are exactly known.

Let c = m(x0) = a + bx0 denote the expected signal at the
threshold level and let ĉ = â + b̂x0 denote the estimate of c based

on the data of the calibration experiment. The corresponding
error variance of ĉ is denoted by s2

ĉ. Then at the significance
level a the null hypothesis H0 can be rejected if
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where z12 a denotes the (1 2a)-quantile of the standard normal
distribution. This formula does not take into account that ĉ
might be negative, which is not allowed since m(x) ! 0.
Replacing ĉ by max{ĉ, 0} provides the rejection rule
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The critical concentration CCa is the corresponding value on the
x-axis, i.e.
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Random sampling

In practice the variance components s2
ĉ, s

2
0 and s2

1(x0) have to be
estimated. We assume that J matrices are chosen at random.
Each matrix sample is divided into I test portions, which will be
spiked at concentration levels x1 . . ., xI. Linear regression of
submodels Yij = aj + bjxi + eij = (a + aj) + (b + b̂j)x + eij with
fixed j provides estimates âj, b̂j and the corresponding residual
variances s2

j = S
I
i (Yij 2 âj 2 b̂jxi)2/(I 2 2). These parameters

provide parameters of the overall calibration curve, the constant
â = 1
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In order to obtain an estimator of the variance of s2
1(x0) of

cj = aj + bjx0, we consider the estimation error gj of the
estimator ĉj = âj + b̂jx0 = aj + bj x0 + gj. Using the information
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estimation error gj can be calculated according to
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Replacing s2
0 by the estimator ŝ2

0 provides an unbiased estimator
ŝ2
g of s2

g. Since the variance of ĉj can be estimated by the
empirical variance s2

c of ĉ1, . . ., ĉJ an unbiased estimator of
s

2
1(x0) is ŝ2

1(x0) = s2
c 2 ŝ

2
g. If the result is negative, let ŝ2

1(x0)
= 0.

These estimators may be applied for the estimation of the sum
of variances s2

ĉ + s2
1(x0) + s2

0 by ŝ2
ĉ + ŝ2

1(x0) + ŝ2
0. The latter is

a linear combination of stochastically independent c2-distrib-
uted random variables. If these estimators replace the true
variances in the formula for the CCa, the quantile z12 a has to
be corrected, too. A conservative correction (which guarantees
that the actual significance level never exceeds the given a)
replaces z12 a by the critical value of the t-distribution with
J 2 1 degrees of freedom, i.e., the CCa can be calculated
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Power function

The power function p(x) represents the probability of the
exceedance of the critical concentration CCa in the case the
sample measured has a true concentration x > x0. The power
function depends on a, s0, s1, the type of calibration curve, the
sampling design, etc. In order to determine the power function
we have to compute the probability p(x) of
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where Y represents the measurement value of a sample with
concentration x. It is assumed that according to the statistical
model Y is normally distributed with expectation max{a + bx,
0} and variance Var(Y) = s2

0 + s2
1(x), where s2

1(x) denotes the
variance component induced by random matrix effects at
concentration x. Moreover it is assumed that the probability of
negative estimates ĉ is neglectable.

At first we consider the distribution of ŝ2
ĉ + ŝ2

1(x) + ŝ2
0.

Unfortunately, there is no closed form expression for its
distribution. In fact, it is a linear combination of c2-distributed
variables. Worst case considerations lead to the conservative
approximation
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non-centrality parameter).

x

Here tJ2 1(dx) denotes the t-distribution with J 2 1 degrees of
freedom and non-centrality parameter dx. Because
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the power function at the true concentration value x can be
estimated
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where FJ2 1,dx denotes the distribution function of the t-
distribution with J 2 1 degrees of freedom and non-centrality
parameter
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