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A flow injection spectrophotometric method for the simultaneous determination of aniline and cyclohexylamine
using multivariate calibration methods is proposed. The method is based on the reaction of these amines with
1,2-naphthoquinone-4-sulfonate, yielding spectrophotometrically active derivatives. The data analysed with
multivariate calibration methods consisted of the spectra registered in the range 290–590 nm at the maximum of
the flow injection peak. Although the spectrum of each derivative was characteristic, overlapping occurred and no
selective wavelengths were found. The predictive abilities of principal component regression and partial
least-squares regression (PLS), non-linear PLS, locally weighted regression (LWR) and artificial neural networks
were examined for the determination of aniline and cyclohexylamine in sample mixtures. The accuracy for
cyclohexylamine and aniline quantifications in unknown mixtures was optimum with LWR, providing overall
prediction errors of 3.4 and 5.6%, respectively.

Introduction

This paper describes a new method for determining aniline and
cyclohexylamine, which are the main impurities found in
cyclamate samples. The need to determine these amines arises
from the fact that cyclamate salts are widely used as non-caloric
sweeteners in diet food and beverages, pharmaceutical products
and table top sweeteners. The toxicity of these amines has been
extensively studied elsewhere (refs. 1–3 for aniline and 4–6 for
cyclohexylamine). Aniline and related compounds have been
classified as priority organic pollutants and their contents in
environmental, industrial and food samples have been regu-
lated. According to the European Pharmacopoeia, the maximum
permissible concentrations of aniline and cyclohexylamine in
table top sweeteners are 1 and 10 ppm, respectively.7 The
standard method for the determination of these amines in
cyclamate preparations is based on gas chromatography.8

Owing to the toxicological significance of these amines in
industrial and dye wastes and pesticides, other analytical
methods have been proposed, including gas chromato-
graphic,9–10 liquid chromatographic,11,12 colorimetric13 and
flow injection14,15 determinations of aniline and liquid chroma-
tographic16 and flow injection17 determinations of
cyclohexylamine.

In contrast to the methods mentioned above for the
determination of aniline and cyclohexylamine, a chemometric
approach18–20 may constitute a rapid, feasible and attractive
alternative for satisfying the demands of control and routine
analyses.

In this study, a flow injection spectrophotometric method was
developed for the simultaneous determination of aniline and
cyclohexylamine using multivariate calibration methods. The
method is based on the reaction of aniline and cyclohexylamine
with 1,2-naphthoquinone-4-sulfonate to yield spectrophotomet-
rically active derivatives. The derivatization procedure was
carried out in a three-channel flow injection manifold. Data
consisting of spectra registered along the flow injection peak
were analysed with several chemometric methods. The aniline
and cyclohexylamine derivatives showed characteristic spectral
shapes enabling both compounds to be distinguished, although

both spectra overlapped considerably and no selective wave-
length was found. Although interference was encountered when
determining these amines by classical univariate calibration
methods, mixtures of aniline and cyclohexylamine were
successfully resolved and quantified on the basis of their
spectral differences using multivariate calibration methods. The
predictive abilities of several multivariate calibration methods,
including principal component regression (PCR), partial least-
squares regression (PLS), non-linear PLS, locally weighted
regression (LWR) and artificial neural networks (ANN), were
therefore investigated.

Experimental

Reagents, solutions and samples

All chemicals were of analytical reagent grade. Solutions were
prepared with doubly distilled water. The reagent solution
consisted of 2 3 1023 M sodium 1,2-naphthoquinone-
4-sulfonate (NQS) (Carlo Erba, Milan, Italy) in 0.1 M
hydrochloric acid (Merck, Darmstadt, Germany). The buffer
solution for the development of the reaction at pH 10.0
consisted of 0.1 M sodium carbonate + 0.09 M sodium
hydroxide. Aniline hydrochloride (Sigma, St Louis, MO, USA)
and cyclohexylamine hydrochloride (Acros Organic, NJ, USA)
were used as received; their purities were checked by gas
chromatography7 and no evidence of cyclohexylamine impurity
in the aniline sample, and vice versa, was found.

Apparatus

Spectrophotometric detection was performed with a Hewlett-
Packard (Avondale, PA, USA) HP8452A diode-array spec-
trophotometer using a Hellma (Mülheim, Germany) flow cell of
10 mm pathlength and 18 ml volume. The acquisition and
storage of spectrophotometric data were carried out with
Hewlett-Packard software on a Hewlett-Packard Vectra N2
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4/50 computer. Further data treatment with multivariate calibra-
tion methods was performed on a 150 MHz Pentium PC. 

Flow injection system

The flow injection system consisted of a three-channel manifold
(Fig. 1).  Solutions were pumped using standard Tygon tubing
with a Scharlau (Barcelona, Spain) HP4 peristaltic pump.
Connectors, T-pieces and coils were made of Teflon. Sample
solutions (200 ml) were injected into a water carrier using a
variable-volume Sirtek (Barcelona, Spain) MV-8 electrical
injection valve. Reagent and buffer solutions merged in a 2 m 3
0.5 mm id coil (MC) and then joined the carrier stream. The
reaction of amines with NQS took place in a 950 cm 3 0.5 mm
id coil (RC) thermostated at 80 °C using an SBS (Barcelona,
Spain) TFB-3 water-bath.

Data generation and treatment

The spectra were registered in the range 290–590 nm at 2 s
intervals in the flow injection peak for 66 s. Spectra, which were
originally stored using the standard Hewlett-Packard software,
were transformed into ASCII files. Subsequently, these spectra
were arranged to obtain suitable files for Matlab (Math Works,
Natick, MA, USA) using a laboratory-written Q-Basic program.
Each sample was injected in triplicate and the multivariate data
obtained for further mathematical analysis consisted of the
average spectrum corresponding to the peak maximum for each
sample injection. By working with the average spectrum, we
were able to shorten the time of analysis as the dimensions of
the data matrices were correspondingly smaller. In addition,
the average spectrum provided better predictions than the
individual spectrum of the maximum of each injection.21 All
transformations described above took about 2 min per
sample.

The composition of standard and unknown mixtures of
cyclohexylamine and aniline used in assessing the model and
for making predictions are described in Table 1. The dimensions
of these data matrices were the number of the working
wavelengths of each spectrum, NW (NW = 51 absorbance

values taken at a regular interval of 6 nm from 290 to 590 nm),
by the number of samples, NS (NS = 8 for both calibration and
prediction sets).

Multivariate calibration methods

For all calculations, Matlab for Windows (Version 4.1)22 was
used. Multivariate calibration methods were carried out with the
PLS_Toolbox23 and the Neural Network Toolbox24 for use with
Matlab. Calculations were carried out using a Pentium PC at
150 MHz. With this computer, calibration and prediction steps
took 1–2 s for PCR, PLS, LWR and NL-PLS and between 5 s
and a few minutes for ANN, depending on their complexity.

A common requirement for this type of calibration method
(i.e., first-order calibration methods) is that unknown samples
and standards be of the same nature, in order that all
contributions from the analytes, interferences and matrix effects
present in the samples are modelled implicitly.20 Although
multivariate calibration methods have been extensively de-
scribed elsewhere,18,19,24–29 a brief description is given
below.

Principal component regression (PCR) 

PCR decomposes the experimental matrix of responses of the
calibration set as follows:

R = T PT + E

R being the response matrix with a dimension NS 3 NW
(number of standards by number of working wavelengths), T
the scores matrix (NS 3 NF), PT the loading matrix (NF 3 NW)
(the superscript T indicates the transposed matrix) and E the
residual error matrix (NS 3 NW), where NF is the number of
latent variables or factors included in the model which are able
to keep the relevant variance of data.

Next, the scores matrix T is correlated with the concentration
matrix C (NS3 NA), where NA is the number of analytes, using
the expression

C = TB + E

where B is the matrix of regression coefficients which is
resolved by using a least-squares procedure.

This model is subsequently applied to predict the concentra-
tions of unknown samples.

Partial least-squares regression (PLS)

The PLS algorithm takes into account the information of
responses and concentrations simultaneously. There are two
procedures available to solve the system: in PLS1, one model is
built for each analyte by using its concentration vector (e.g., C
is NS 3 1), whereas in PLS2, all analyte concentrations are
simultaneously considered in constructing the calibration model
(e.g., C is NS3 NA). In this way, factors from a PLS model are
calculated as those variables which describe the maximum
amount of information for the concentration matrix. Factors

Fig. 1 Flow injection manifold. P = peristaltic pump; V = injection
valve; D = detector; T = thermostated bath; RC = reaction coil (950 cm
3 0.5 mm id); MC = mixing coil (200 cm 3 0.5 mm id) S = sample
solution; C = carrier (water); R = reagent solution (2 3 1023 M NQS + 0.1
M HCl); B = buffer solution (0.1 M Na2CO3 + 0.09 M NaOH); W = waste.
Flow rates: channel C = 0.85; channel R = 0.85; and channel B = 0.75
ml min21.

Table 1 Composition of the mixture solutions used as standard (S1–S8) and unknown (U1–U8) samples

Cyclohexylamine concentration/M

Aniline concentration/M 5 31025 7.5 31025 1 31024 1.25 31024

3 3 1025 S1 U3 U5 S7
5 3 1025 U1 S3 S5 U7

7.5 3 1025 U2 S4 S6 U8
1 3 1024 S2 U4 U6 S8
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containing the relevant information of R and C were obtained as
follows:

R = T PT + EA
C = Q ST + EB

where, as with PCR, T and P are the score and loading matrices
associated with the response, Q and S are the scores and loading
of the concentration matrix and EA and EB are the unexplained
information of responses and concentrations, respectively.

The relationship between scores and concentrations is
obtained from

C = TBQT + E

where B is the matrix of the regression coefficients obtained by
a least-squares procedure.

Once the model is built, it can be used to predict the
concentration of unknown samples.

Non-linear PLS (NL-PLS)

PCR and PLS algorithms have essentially been developed for
modelling linear data since they apply inner linear relationships
between responses and concentrations. However, they can also
be applied to non-linear data. In the latter case, the non-linearity
of the response can be considered by including more factors.
Alternatively, non-linear PLS procedures have also been
proposed, which utilise different types of inner non-linear
relationships. Among these, polynomial functions25 and artifi-
cial neural networks26 are often used.

Locally weighted regression

Locally weighted regression is based on the idea that the
prediction of unknown samples can be improved by using close
standard samples (e.g., with very similar matrix compositions
and concentrations), while the use of further away standards can
lead to less efficient models. This method is implemented by
weighting in the regression model according to the proximity of
the standards to the sample to be predicted. In general, the
criterion for measuring the proximity between the sample and
each standard is the Mahalanobis distance.27 However, here, the
method has been modified as it gives the same weight to all
close standards while rejecting the distant standards according
to their PC distribution and the analyst’s criterion.

The selection of the optimum number of latent variables for
PCR and PLS methods mentioned above was performed by
cross-validation.28

Artificial neural networks

Artificial neural networks have been successfully applied to the
empirical modelling of various types of data without focusing
on the actual mathematical relationships between the varia-
bles.29 The neural network is composed of an input layer, which
contains the entry data, an output layer which usually contains
the quantitative values and one or several hidden layers of
neurones which calculate the coefficients (weights) between
inputs and outputs using transfer functions. In the calibration
step, the network is usually trained by back-propagation using
standard samples in order to adjust the weights and thereby
minimise the error. Subsequently, in the prediction step, the
network is used to make predictions on new unknown
samples.

In this case, the network architecture consisted of a three-
layered structure in which (i) the input layer values contained
spectral information (e.g., band maxima absorbances, scores),
(ii) the hidden layer contained eight neurones operating with

linear transfer functions and (iii) the output layer contained the
concentration values of aniline and cyclohexylamine in the
standard mixtures. The network was trained by back-propaga-
tion until the percentage error desired (1%) was achieved. The
initial weights and biases at the start of the learning process
were randomised.

Calculating the prediction error

The prediction error for the calibration and prediction steps was
calculated using the expression

error (%) =  
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where Citrue is the real concentration of analyte in the sample i
and Cicalc. is the concentration calculated by multivariate
calibration methods.

Results and discussion

Fig. 2 provides an example of a three-dimensional plot of the
raw spectrophotometric data obtained from the injection of a
1024 M aniline + 1024 M cyclohexylamine solution. Prelimi-
nary studies sought to determine the type of spectral informa-
tion that was analytically useful for making predictions. It was
found that the spectrum of the maximum of the flow injection
peak was preferable to the whole spectral information. This was
because measurements over time did not help to differentiate
between the two analytes. Indeed, the shapes of the concentra-
tion profiles for the two analytes were identical. Consequently,
including more spectral information did not improve predic-
tions, but rather increased the amount of correlated data and the
time of analysis.

Fig. 3 shows the spectra of cyclohexylamine and aniline
derivatives in the range 290–590 nm. Each compound showed
a characteristic spectrum, the shape of which could be
distinguished from the other. However, there was a high degree
of overlap and no selective wavelength was found to determine
those amines with classical univariate calibration. The esti-
mated similarity of these spectra using the correlation value
(cosine value between the two spectra) was 0.946. Conse-
quently, the resolution and simultaneous determination of these
amines using multivariate calibration methods are dependent on

Fig. 2 Three-dimensional plot of the spectrophotometric data for the
injection of a 1024 M aniline + 1024 M cyclohexylamine solution into the
flow injection system. Flow injection conditions as in Fig. 1.
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the particular features of the spectral response of each
analyte.

The distribution of the spectra of the standard and unknown
samples on the first and second principal components is shown
in Fig. 4. The first principal component (PC-1) was highly
correlated with the maximum absorbance of each spectrum,
which was related to the total concentration of amines in each
sample. Thus, samples with a high concentration of amines lay
to the right, whereas samples with a low concentration of
amines fell to the left of the PC-1 axis. Moreover, samples with
the same total concentration scored approximately the same for
this PC-1. The PC-2 accounted for the ratio [cyclohexylamine]/
[aniline] of the samples; samples with higher ratios were at the
top of the graph, samples with ratios close to 1 lay on the middle
of the PC-2 axis and samples with lower ratios appeared at the
bottom. Additionally, other patterns and clusters could be
recognised. All samples with the same concentration of aniline
lay on approximately straight lines. A similar behaviour was
observed with respect to the cyclohexylamine concentration.
These findings indicated a great structure in the distribution of
the standard and unknown samples.

The selection of the optimum number of components for
calibration with PCR and PLSR was estimated beforehand by
cross-validation.28 Suitable modelling of the data variance and
accurate predictions were obtained using two latent variables
for aniline and three latent variables for cyclohexylamine.
Models built with a larger number of components gave less
accurate predictions. 

In the case of non-linear PLS modelling using polynomials,
the optimum degree of the polynomial was two. When higher
degrees were tested, data overfitting was observed because
although the calibration error decreased, the prediction error
increased considerably. In this study, the amount of excess
reagent with respect to the analytes seems to be sufficient in
order to avoid non-linearities in the responses (non-linearities
might appear if the NQS concentration was not sufficient to
derivatize both amines quantitatively, for example, as there
would be competition for the reagent). For this reason, non-
linear algorithms did not improve the prediction given by linear
algorithms.

Table 2 summarises the results of the prediction of the sample
mixtures with the PCR and PLS methods. The quantification
errors were similar for all methods. In all cases, cyclohexyl-
amine was predicted with greater accuracy than aniline, with
overall errors of about 4 and 9.5%, respectively. A possible
explanation for this finding might be that the spectrum of the
cyclohexylamine derivative presented greater selectivity with
respect to the background NQS absorption (not apparent for
these measurements as it was taken as a reference) and, thus,
cyclohexylamine could be more easily modelled.

Various neural network architectures were designed and
trained with up to three hidden layers of neurones being used.
However, the simplest of these, i.e., those with one hidden layer
of neurones, were found to be optimum. Several types of data
were analysed, including the use of the whole spectrum for each
sample and other spectral information (see below). When whole
spectra were used, the network complexity and the learning
times increased greatly. Indeed, the network was unsuccessfully
trained since the desired fitting error was not reached. Other
simpler data inputs (e.g., band maxima absorbances, scores of
PC-1 and PC-2 and absorbance values for the purest variables)
were efficiently modelled by back-propagation with a relatively
small number of epochs (< 2000). The results of these
predictions are given in Table 3, where it can be seen that aniline
was more accurately determined than cyclohexylamine (with
prediction errors around 5–6.5 and 27%, respectively), in
contrast to PCR and PLS methods, which gave better results for
cyclohexylamine. These results may be explained by the fact

Fig. 3 Spectra of the aniline and cyclohexylamine derivatives recorded at
the maximum of the flow injection peak. Aniline concentration = 1024 M;
cyclohexylamine concentration = 1024 M. Flow injection conditions as in
Fig. 1.

Fig. 4 Distribution plot of standard and unknown samples on the first and
second principal components.

Table 2 Percentage errors in the calibration and prediction steps using
PCR and PLS methods

Error (%)

Aniline Cyclohexylamine

Method Calibration Prediction Calibration Prediction

PCRa 9.9 9.2 3.7 3.9
PLS1a 9.4 9.3 3.5 4.1
PLS2a 9.4 9.2 3.7 3.9
NL-PLSa,b 6.6 11.0 3.5 6.7
a Using two factors for aniline and three for cyclohexylamine. b The degree
of polynomial is two.

Table 3 Percentage errors in the calibration and prediction steps using
neural networks for different types of data

Error (%)

Aniline Cyclohexylamine

Type of data Calibration Prediction Calibration Prediction

Band maximaa 0.1 6.5 0.4 27.4
Scoresb 0.1 6.4 2.0 27.3
Purest variablesc 0.3 5.0 0.3 27.4
a Absorbances at 305 and 480 nm. b Scores of the first and second principal
components. cAbsorbances at 296 and 332 nm.
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that inputs for the ANN were much more strongly correlated
with the aniline concentration in the samples than with that of
cyclohexylamine and, therefore, aniline was more accurately
quantified.

In this paper, we propose an alternative approach to improve
quantification. This consists of the building of local PLS models
for the prediction of each sample. Therefore, instead of using all
the standard information, a selected subset of standards was
considered for each unknown sample. Obviously, local models
could be used with the other calibration methods (e.g., PCR or
NL-PLS). However, since one is not markedly superior to the
others, PLS was chosen for testing. Thus, each sample could be
predicted by using the most similar standards (e.g., those which
lie closest to its neighbourhood). The proximity between the
unknown sample and the standards can be seen from its
distribution on PC-1 and PC-2 in Fig. 4. This approach was, in
essence, similar to a locally weighted regression,27 which in
predicting gives a high weight to nearby standards and penalises
those which are furthest away, in accordance with the
Mahalanobis distances. However, the present method gave the
same weight to all close standards and rejected the distant ones
according to their PC distribution and the analyst’s criterion.
This method seemed to work better than locally weighted
regression, at least in the prediction of the mixtures of
cyclohexylamine and aniline proposed here.

Accordingly, samples U1 and U2 were predicted using
standards S1, S2, S3 and S4; samples U7 and U8 with standards
S5, S6, S7 and S8; samples U3 and U5 with standards S1, S3,
S5 and S7; and samples U4 and U6 with standards S2, S4, S6
and S8 (see their distribution in Fig. 4 and compositions in
Table 1). The subsets of standard and unknown samples were
able to define clusters characterised by low aniline concentra-
tion, high aniline concentration, high cyclohexylamine concen-
tration and low cyclohexylamine concentration, respectively. 

Fig. 5 shows the results of the determination of these amines
in the unknown samples compared with their actual values. It
can be seen that there was good agreement between the real and
calculated values. The overall prediction errors were 3.4 and
5.6% for cyclohexylamine and aniline, respectively. 

Conclusions

We have proposed a new method for the simultaneous
determination of aniline and cyclohexylamine using flow

injection analysis and multivariate calibration methods. For
each sample, the only information required is its spectrum,
which is registered at the maximum of the flow injection peak.
Several multivariate calibration methods were tested, including
PCR, PLS, NL-PLS and ANN. It was found that samples with
a high (or low) concentration of a particular analyte were more
accurately modelled when using standards of similar character-
istics. Consequently, the best option for carrying out this
determination seems to involve the building of local calibration
models in which standards are selected to predict each particular
sample. The criterion for choosing standards is their proximity
to the sample that is to be predicted, according to their
distribution on principal component plots.
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Fig. 5 Comparison between actual and calculated concentrations of
aniline and cyclohexylamine in the unknown samples using local PLS
models.
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