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A flow injection spectrophotometric method for the simultaneous determination of aniline and cyclohexylamine
using multivariate calibration methods is proposed. The method is based on the reaction of these amines with
1,2-naphthoquinone-4-sulfonate, yielding spectrophotometrically active derivatives. The data analysed with
multivariate calibration methods consisted of the spectra registered in the range 290-590 nm at the maximum of
the flow injection peak. Although the spectrum of each derivative was characteristic, overlapping occurred and no
selective wavelengths were found. The predictive abilities of principal component regression and partial
least-squares regression (PLS), non-linear PLS, locally weighted regression (LWR) and artificial neural networks
were examined for the determination of aniline and cyclohexylamine in sample mixtures. The accuracy for
cyclohexylamine and aniline quantifications in unknown mixtures was optimum with LWR, providing overall

prediction errors of 3.4 and 5.6%, respectively.
Introduction

This paper describes a new method for determining aniline and
cyclohexylamine, which are the main impurities found in
cyclamate samples. The need to determine these amines arises
from the fact that cyclamate salts are widely used as non-caloric
sweetenersin diet food and beverages, pharmaceutical products
and table top sweeteners. The toxicity of these amines has been
extensively studied elsewhere (refs. 1-3 for aniline and 46 for
cyclohexylamine). Aniline and related compounds have been
classified as priority organic pollutants and their contents in
environmental, industrial and food samples have been regu-
lated. According to the European Pharmacopoeia, the maximum
permissible concentrations of aniline and cyclohexylamine in
table top sweeteners are 1 and 10 ppm, respectively.” The
standard method for the determination of these amines in
cyclamate preparations is based on gas chromatography.8

Owing to the toxicologica significance of these amines in
industrial and dye wastes and pesticides, other analytical
methods have been proposed, including gas chromato-
graphic,®10 liquid chromatographic,1112 colorimetricl3 and
flow injection1415 determinations of aniline and liquid chroma-
tographic’® and flow injection'” determinations of
cyclohexylamine.

In contrast to the methods mentioned above for the
determination of aniline and cyclohexylamine, a chemometric
approach18-20 may constitute a rapid, feasible and attractive
dternative for satisfying the demands of control and routine
analyses.

Inthisstudy, aflow injection spectrophotometric method was
developed for the simultaneous determination of aniline and
cyclohexylamine using multivariate calibration methods. The
method is based on the reaction of aniline and cyclohexylamine
with 1,2-naphthoquinone-4-sulfonate to yield spectrophotomet-
rically active derivatives. The derivatization procedure was
carried out in a three-channel flow injection manifold. Data
consisting of spectra registered along the flow injection peak
were analysed with several chemometric methods. The aniline
and cyclohexylamine derivatives showed characteristic spectral
shapes enabling both compounds to be distinguished, athough

both spectra overlapped considerably and no selective wave-
length was found. Although interference was encountered when
determining these amines by classical univariate calibration
methods, mixtures of aniline and cyclohexylamine were
successfully resolved and quantified on the basis of their
spectral differences using multivariate calibration methods. The
predictive abilities of several multivariate calibration methods,
including principal component regression (PCR), partial least-
squares regression (PLS), non-linear PLS, locally weighted
regression (LWR) and artificial neural networks (ANN), were
therefore investigated.

Experimental
Reagents, solutions and samples

All chemicals were of analytical reagent grade. Solutions were
prepared with doubly distilled water. The reagent solution
consisted of 2 X 103 M sodium 1,2-naphthoquinone-
4-sulfonate (NQS) (Carlo Erba, Milan, Itdy) in 0.1 M
hydrochloric acid (Merck, Darmstadt, Germany). The buffer
solution for the development of the reaction at pH 10.0
consisted of 0.1 M sodium carbonate + 0.09 M sodium
hydroxide. Aniline hydrochloride (Sigma, St Louis, MO, USA)
and cyclohexylamine hydrochloride (Acros Organic, NJ, USA)
were used as received; their purities were checked by gas
chromatography? and no evidence of cyclohexylamineimpurity
in the aniline sample, and vice versa, was found.

Apparatus

Spectrophotometric detection was performed with a Hewlett-
Packard (Avondale, PA, USA) HP8452A diode-array spec-
trophotometer using aHellma (M ullheim, Germany) flow cell of
10 mm pathlength and 18 ul volume. The acquisition and
storage of spectrophotometric data were carried out with
Hewlett-Packard software on a Hewlett-Packard Vectra N2
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4/50 computer. Further datatreatment with multivariate calibra-
tion methods was performed on a 150 MHz Pentium PC.

Flow injection system

Theflow injection system consisted of athree-channel manifold
(Fig. 1). Solutions were pumped using standard Tygon tubing
with a Scharlau (Barcelona, Spain) HP4 peristaltic pump.
Connectors, T-pieces and coils were made of Teflon. Sample
solutions (200 wl) were injected into a water carrier using a
variable-volume Sirtek (Barcelona, Spain) MV-8 electrical
injection valve. Reagent and buffer solutionsmergedina2 m x
0.5 mm id coil (MC) and then joined the carrier stream. The
reaction of amineswith NQS took placein a950 cm x 0.5 mm
id coil (RC) thermostated at 80 °C using an SBS (Barcelona,
Spain) TFB-3 water-bath.

Data generation and treatment

The spectra were registered in the range 290-590 nm at 2 s
intervalsin theflow injection pesk for 66 s. Spectra, which were
originally stored using the standard Hewlett-Packard software,
were transformed into ASCII files. Subsequently, these spectra
were arranged to obtain suitable files for Matlab (Math Works,
Natick, MA, USA) using alaboratory-written Q-Basic program.
Each sample was injected in triplicate and the multivariate data
obtained for further mathematical analysis consisted of the
average spectrum corresponding to the peak maximum for each
sample injection. By working with the average spectrum, we
were able to shorten the time of analysis as the dimensions of
the data matrices were correspondingly smaller. In addition,
the average spectrum provided better predictions than the
individual spectrum of the maximum of each injection.21 All
transformations described above took about 2 min per
sample.

The composition of standard and unknown mixtures of
cyclohexylamine and aniline used in assessing the model and
for making predictionsaredescribedin Table 1. Thedimensions
of these data matrices were the number of the working
wavelengths of each spectrum, NW (NW = 51 absorbance

W

Fig. 1 Flow injection manifold. P = peristaltic pump; V = injection
valve; D = detector; T = thermostated bath; RC = reaction coil (950 cm
X 0.5 mm id); MC = mixing coil (200 cm X 0.5 mm id) S = sample
solution; C = carrier (water); R = reagent solution (2 X 10-3M NQS+ 0.1
M HCI); B = buffer solution (0.1 M Na,COs3 + 0.09 M NaOH); W = waste.
Flow rates: channel C = 0.85; channel R = 0.85; and channel B = 0.75
ml min—1,

values taken at aregular interval of 6 nm from 290 to 590 nm),
by the number of samples, NS(NS = 8 for both calibration and
prediction sets).

Multivariate calibration methods

For al calculations, Matlab for Windows (Version 4.1)22 was
used. Multivariate calibration methods were carried out with the
PLS Toolbox23 and the Neural Network Toolbox24 for use with
Matlab. Calculations were carried out using a Pentium PC at
150 MHz. With this computer, calibration and prediction steps
took 1-2 sfor PCR, PLS, LWR and NL-PLS and between 5 s
and a few minutes for ANN, depending on their complexity.

A common requirement for this type of calibration method
(i.e., first-order calibration methods) is that unknown samples
and standards be of the same nature, in order that all
contributions from the analytes, interferences and matrix effects
present in the samples are modelled implicitly.20 Although
multivariate calibration methods have been extensively de-
scribed elsewhere 18192429 3 prief description is given
below.

Principal component regression (PCR)

PCR decomposes the experimental matrix of responses of the
calibration set as follows:

R=TPT+E

R being the response matrix with a dimension NS x NW
(number of standards by number of working wavelengths), T
the scores matrix (NS x NF), PT theloading matrix (NF X NW)
(the superscript T indicates the transposed matrix) and E the
residual error matrix (NS X NW), where NF is the number of
latent variables or factors included in the model which are able
to keep the relevant variance of data.

Next, the scores matrix T is correlated with the concentration
matrix C (NS x NA), where NA isthe number of analytes, using
the expression

C=TB+E

where B is the matrix of regression coefficients which is
resolved by using a least-squares procedure.

This model is subsequently applied to predict the concentra-
tions of unknown samples.

Partial least-squares regression (PLS)

The PLS algorithm takes into account the information of
responses and concentrations simultaneously. There are two
procedures available to solve the system: in PLS1, one model is
built for each anayte by using its concentration vector (e.g., C
is NS x 1), whereas in PLS2, all analyte concentrations are
simultaneously considered in constructing the calibration model
(e.g., CisNS x NA). Inthisway, factorsfrom aPLS model are
calculated as those variables which describe the maximum
amount of information for the concentration matrix. Factors

Tablel Composition of the mixture solutions used as standard (S1-S8) and unknown (U1-U8) samples

Cyclohexylamine concentration/M

Aniline concentration/M 5 x10-5 7.5 x10-5 1 x10—4 1.25 x10—4
3 x 105 S1 u3 us S7
5x 10-° Ul S3 S5 u7

75 x 10-5 u2 % S6 us
1x 104 2 u4 u6 S8
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containing therelevant information of R and C were obtained as
follows:

R=TPT+FE
C=QST+E”

where, aswith PCR, T and P are the score and |oading matrices
associated with the response, Q and S are the scores and |oading
of the concentration matrix and E’ and E” are the unexplained
information of responses and concentrations, respectively.

The relationship between scores and concentrations is
obtained from

C=TBQT+E

where B isthe matrix of the regression coefficients obtained by
a least-squares procedure.

Once the model is built, it can be used to predict the
concentration of unknown samples.

Non-linear PLS (NL-PLS)

PCR and PLS algorithms have essentially been developed for
modelling linear data since they apply inner linear relationships
between responses and concentrations. However, they can also
be applied to non-linear data. In thelatter case, the non-linearity
of the response can be considered by including more factors.
Alternatively, non-linear PLS procedures have aso been
proposed, which utilise different types of inner non-linear
relationships. Among these, polynomial functions?s and artifi-
cial neural networks?é are often used.

L ocally weighted regression

Locally weighted regression is based on the idea that the
prediction of unknown samples can be improved by using close
standard samples (e.g., with very similar matrix compositions
and concentrations), while the use of further away standards can
lead to less efficient models. This method is implemented by
weighting in the regression model according to the proximity of
the standards to the sample to be predicted. In general, the
criterion for measuring the proximity between the sample and
each standard isthe Mahal anobis distance.2” However, here, the
method has been modified as it gives the same weight to all
close standards while regjecting the distant standards according
to their PC distribution and the analyst’s criterion.

The selection of the optimum number of latent variables for
PCR and PLS methods mentioned above was performed by
cross-validation.28

Artificial neural networks

Artificia neural networks have been successfully applied to the
empirical modelling of various types of data without focusing
on the actual mathematical relationships between the varia-
bles.2° The neural network iscomposed of an input layer, which
contains the entry data, an output layer which usually contains
the quantitative values and one or severa hidden layers of
neurones which calculate the coefficients (weights) between
inputs and outputs using transfer functions. In the calibration
step, the network is usually trained by back-propagation using
standard samples in order to adjust the weights and thereby
minimise the error. Subsequently, in the prediction step, the
network is used to make predictions on new unknown
samples.

In this case, the network architecture consisted of a three-
layered structure in which (i) the input layer values contained
spectral information (e.g., band maxima absorbances, scores),
(ii) the hidden layer contained eight neurones operating with

linear transfer functions and (iii) the output layer contained the
concentration values of aniline and cyclohexylamine in the
standard mixtures. The network was trained by back-propaga-
tion until the percentage error desired (1%) was achieved. The
initial weights and biases at the start of the learning process
were randomised.

Calculating the prediction error

The prediction error for the calibration and prediction steps was
calculated using the expression

‘w‘sample

\“\“ ;(Qtrue - Qcaﬂc)z

sample
J D Coae)’
i=1

where Ciyre is the real concentration of analyte in the sample i
and Cicgc IS the concentration calculated by multivariate
calibration methods.

x 100

error (%) =

Results and discussion

Fig. 2 provides an example of a three-dimensional plot of the
raw spectrophotometric data obtained from the injection of a
104 M aniline + 10—4 M cyclohexylamine solution. Prelimi-
nary studies sought to determine the type of spectral informa
tion that was analytically useful for making predictions. It was
found that the spectrum of the maximum of the flow injection
peak was preferable to the whole spectral information. Thiswas
because measurements over time did not help to differentiate
between the two analytes. Indeed, the shapes of the concentra-
tion profiles for the two analytes were identical. Consequently,
including more spectra information did not improve predic-
tions, but rather increased the amount of correlated data and the
time of analysis.

Fig. 3 shows the spectra of cyclohexylamine and aniline
derivatives in the range 290-590 nm. Each compound showed
a characteristic spectrum, the shape of which could be
distinguished from the other. However, there was a high degree
of overlap and no selective wavelength was found to determine
those amines with classical univariate caibration. The esti-
mated similarity of these spectra using the correlation value
(cosine value between the two spectra) was 0.946. Conse-
quently, the resolution and simultaneous determination of these
amines using multivariate calibration methods are dependent on
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Fig. 2 Three-dimensiona plot of the spectrophotometric data for the
injection of a10—4 M aniline + 10—4 M cyclohexylamine solution into the
flow injection system. Flow injection conditions asin Fig. 1.

Analyst, 1999, 124, 745-749 747



the particular features of the spectral response of each
analyte.

The distribution of the spectra of the standard and unknown
samples on the first and second principal componentsis shown
in Fig. 4. The first principa component (PC-1) was highly
correlated with the maximum absorbance of each spectrum,
which was related to the total concentration of amines in each
sample. Thus, samples with a high concentration of amines lay
to the right, whereas samples with a low concentration of
aminesfell to the left of the PC-1 axis. Moreover, samples with
the same total concentration scored approximately the same for
this PC-1. The PC-2 accounted for theratio [cyclohexylamine]/
[aniline] of the samples; samples with higher ratios were at the
top of the graph, sampleswith ratios closeto 1 lay on themiddle
of the PC-2 axis and samples with lower ratios appeared at the
bottom. Additionally, other patterns and clusters could be
recognised. All samples with the same concentration of aniline
lay on approximately straight lines. A similar behaviour was
observed with respect to the cyclohexylamine concentration.
These findings indicated a great structure in the distribution of
the standard and unknown samples.

The selection of the optimum number of components for
calibration with PCR and PLSR was estimated beforehand by
cross-validation.28 Suitable modelling of the data variance and
accurate predictions were obtained using two latent variables
for aniline and three latent variables for cyclohexylamine.
Models built with a larger number of components gave less
accurate predictions.
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Fig. 3 Spectraof the aniline and cyclohexylamine derivatives recorded at
the maximum of the flow injection peak. Aniline concentration = 10—4 M;
cyclohexylamine concentration = 10—4 M. Flow injection conditions asin
Fig. 1.

2 + Standard
o Unknown

In the case of non-linear PLS modelling using polynomials,
the optimum degree of the polynomia was two. When higher
degrees were tested, data overfitting was observed because
athough the calibration error decreased, the prediction error
increased considerably. In this study, the amount of excess
reagent with respect to the analytes seems to be sufficient in
order to avoid non-linearities in the responses (non-linearities
might appear if the NQS concentration was not sufficient to
derivatize both amines quantitatively, for example, as there
would be competition for the reagent). For this reason, non-
linear algorithms did not improve the prediction given by linear
algorithms.

Table 2 summarisesthe results of the prediction of the sample
mixtures with the PCR and PLS methods. The quantification
errors were similar for al methods. In all cases, cyclohexyl-
amine was predicted with greater accuracy than aniline, with
overall errors of about 4 and 9.5%, respectively. A possible
explanation for this finding might be that the spectrum of the
cyclohexylamine derivative presented greater selectivity with
respect to the background NQS absorption (not apparent for
these measurements as it was taken as a reference) and, thus,
cyclohexylamine could be more easily modelled.

Various neural network architectures were designed and
trained with up to three hidden layers of neurones being used.
However, the simplest of thesg, i.e., those with one hidden layer
of neurones, were found to be optimum. Several types of data
were analysed, including the use of the whole spectrum for each
sample and other spectral information (see below). When whole
spectra were used, the network complexity and the learning
timesincreased greatly. Indeed, the network was unsuccessfully
trained since the desired fitting error was not reached. Other
simpler data inputs (e.g., band maxima absorbances, scores of
PC-1 and PC-2 and absorbance values for the purest variables)
were efficiently modelled by back-propagation with arelatively
small number of epochs (<2000). The results of these
predictionsaregivenin Table 3, whereit can be seen that aniline
was more accurately determined than cyclohexylamine (with
prediction errors around 5-6.5 and 27%, respectively), in
contrast to PCR and PL S methods, which gave better results for
cyclohexylamine. These results may be explained by the fact

Table 2 Percentage errors in the caibration and prediction steps using
PCR and PLS methods

Error (%)

Aniline Cyclohexylamine
Method Calibration  Prediction Calibration  Prediction
PCRa 9.9 9.2 3.7 3.9
PLS1a 9.4 9.3 35 4.1
PLS2a 9.4 9.2 3.7 3.9
NL-PLSaP 6.6 11.0 35 6.7

aUsing two factors for aniline and three for cyclohexylamine. b The degree

of polynomial istwo.

Table 3 Percentage errors in the calibration and prediction steps using

neural networks for different types of data

PC2
-
@
of

* 57

PC1

Fig.4 Distribution plot of standard and unknown samples on thefirst and
second principal components.
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Error (%)

Aniline Cyclohexylamine
Type of data Calibration  Prediction Calibration  Prediction
Band maximaa 0.1 6.5 0.4 274
ScoresP 0.1 6.4 20 27.3
Purest variables® 0.3 5.0 0.3 274

a Absorbances at 305 and 480 nm. P Scores of the first and second principal

components. cAbsorbances at 296 and 332 nm.




that inputs for the ANN were much more strongly correlated
with the aniline concentration in the samples than with that of
cyclohexylamine and, therefore, aniline was more accurately
quantified.

In this paper, we propose an aternative approach to improve
quantification. This consistsof the building of local PLS models
for the prediction of each sample. Therefore, instead of using all
the standard information, a selected subset of standards was
considered for each unknown sample. Obviously, local models
could be used with the other calibration methods (e.g., PCR or
NL-PLS). However, since one is not markedly superior to the
others, PL Swas chosen for testing. Thus, each sample could be
predicted by using the most similar standards (e.g., those which
lie closest to its neighbourhood). The proximity between the
unknown sample and the standards can be seen from its
distribution on PC-1 and PC-2 in Fig. 4. This approach was, in
essence, similar to a locally weighted regression,2” which in
predicting gives ahigh weight to nearby standards and penalises
those which are furthest away, in accordance with the
Mahalanobis distances. However, the present method gave the
same weight to all close standards and rejected the distant ones
according to their PC distribution and the analyst’s criterion.
This method seemed to work better than locally weighted
regression, at least in the prediction of the mixtures of
cyclohexylamine and aniline proposed here.

Accordingly, samples Ul and U2 were predicted using
standards S1, S2, S3 and $4; samples U7 and U8 with standards
S5, S6, S7 and S8; samples U3 and U5 with standards S1, S3,
S5 and S7; and samples U4 and U6 with standards S2, $4, S6
and S8 (see their distribution in Fig. 4 and compositions in
Table 1). The subsets of standard and unknown samples were
able to define clusters characterised by low aniline concentra-
tion, high aniline concentration, high cyclohexylamine concen-
tration and low cyclohexylamine concentration, respectively.

Fig. 5 shows the results of the determination of these amines
in the unknown samples compared with their actual values. It
can be seen that there was good agreement between the real and
calculated values. The overall prediction errors were 3.4 and
5.6% for cyclohexylamine and aniline, respectively.

Conclusions

We have proposed a new method for the simultaneous
determination of aniline and cyclohexylamine using flow
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Fig. 5 Comparison between actual and calculated concentrations of
aniline and cyclohexylamine in the unknown samples using local PLS
models.

injection analysis and multivariate calibration methods. For
each sample, the only information required is its spectrum,
which isregistered at the maximum of the flow injection peak.
Several multivariate calibration methods were tested, including
PCR, PLS, NL-PLS and ANN. It was found that samples with
ahigh (or low) concentration of a particular analyte were more
accurately modelled when using standards of similar character-
istics. Conseguently, the best option for carrying out this
determination seems to involve the building of local calibration
modelsin which standards are selected to predict each particular
sample. The criterion for choosing standards is their proximity
to the sample that is to be predicted, according to their
distribution on principal component plots.
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