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The multivariate calibration methods—moving window selection partial least squares regression

(MWPLSR) and net analyte signal (NAS)—were employed for simultaneous determination of

a mixture of C.I. Disperse Blue 183, C.I. Disperse Blue 79, C.I. Disperse Red 82, C.I. Disperse Red 65,

C.I. Disperse Yellow 211 and C.I. Disperse Orange 25 by UV-vis spectrophotometry. The absorption

spectra of the six disperse dyes were recorded between 320 and 680 nm. A modified changeable size

moving window partial least squares (CSMWPLS) and searching combination moving window partial

least squares (SCMWPLS) were proposed to search for an optimized spectral interval and an optimized

combination of spectral regions from informative regions obtained by MWPLSR. Different

wavelength regions were selected by taking into account different spectral parameters including the

starting wavelength, the ending wavelength and wavelength interval. It was found that wavelength

selection improved the performance of the corresponding net analyte signal-partial least squares (NAS-

PLS) model, in terms of root mean square error (RMSE), compared with the results obtained using

whole spectra or direct combination of informative regions for each dye. The importance of

calibration design was also investigated by calculating the prediction and validation errors. The

influence of using independent validation sets were emphasized. The proposed calibration method

gave better results in combination and informative spectral regions for determination of the six disperse

dyes without prior separation.
1. Introduction

Large quantities of azo dyes have been widely used in a variety of

products, such as textiles, paper, foodstuffs and leather.1–3 The

release of azo dyes into the environment is a major problem for

life and a threat to the environment. Many azo dyes and their

breakdown products are toxic and/or mutagenic to life.4,5

Disperse azo dyes have been continuously used in the textile

industry.6 These dyes can be applied to synthetic fibres such as

polyester, nylon, acetate, cellulose and acrylic.7 The concentra-

tion of disperse dyes could be in the mg/L level in waste water.2

Therefore, a pre-concentration step will be necessary for better

detection and quantification limits of disperse dyes.

Recently, determination of dyes in waste water has been per-

formed successfully by high performance liquid chromatography

(HPLC), liquid chromatography and mass spectrometry (LC-

MS), capillary electrophoresis (CE), and gas chromatography

and mass spectrometry (GC-MS).2 However, chromatographic

determination of dyes in a mixture takes much more time and

also a prior separation is needed because of spectral and
University of Uludag, Faculty of Science and Arts, Deparment of
Chemistry, 16059 Bursa, Turkey. E-mail: cevdet@uludag.edu.tr; Fax:
+90-224-2941899; Tel: +90-224-2941727

† Electronic supplementary information (ESI) available: Tables 1–6 show
the selected PLS components and optimum RMSEs of the predictions by
PLS calibration methods for a calibration set and two validation sets for
each of the six dyes. Table 7 summarizes the calibration results. See DOI:
10.1039/b9ay00009g

208 | Anal. Methods, 2009, 1, 208–214
chromatographic overlapping with matrix components. There-

fore, UV-vis spectrophotometric determination is preferred to

chromatographic techniques since it is possible to obtain high

accuracy and reproducibility in complex matrices.

Multivariate calibration methods such as principal component

regression (PCR) and partial least squares (PLS) have been

applied to overlapping spectra and chromatograms success-

fully.8–11 These methods offer an advantage of speed in the

determination of components of matrices, because sample

preparation is eliminated or minimized and a preliminary sepa-

ration step in complex matrices is avoided.12,13 PLS and PCR

cover a full spectral region for calculating a calibration model

and the use of the whole spectral region does not yield optimal

results. Thus, a wavelength selection method is still important

and necessary for quantifying highly complicated samples. A new

method of spectral interval selection called moving window

partial least squares regression (MWPLSR) has been proposed

for solving problems to improve quality of model.14–16 The

advantage of applying MWPLSR is to search for informative

spectral regions for the multi-component overlapped spectral

analysis. MWPLSR develops PLS calibration models in every

window that moves over the whole spectral region and then

informative regions, in terms of the least complexity of PLS

models reaching the calculated lowest sum of residuals, are

located. Although MWPLSR is a powerful method in selecting

informative regions, each informative region obtained by

MWPLSR does not supply the best predictive results and these

regions may be unsatisfactory for obtaining the optimum results.
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Fig. 1 Scheme for explanation of MWPLSR.
When complicated samples such as environmental matrices were

analyzed, one informative region may contain several other

regions because of the significant interferences. A combination of

informative regions can be used to overcome interference prob-

lems to collect more useful information from the spectra for

improving the prediction ability of a PLS model. Each infor-

mative region is optimized with the combination of separate best

windows in the whole spectral region. Searching for an optimized

sub-region for each selected informative region and the opti-

mized combination of informative regions by changeable size

moving window partial least squares (CSMWPLS) and searching

combination moving window partial least squares (SCMWPLS)

methods have been applied in literature.14,17,18 The CSMWPLS

procedure changes the window size and moves the window over

a selected informative region with each window size. The

SCMWPLS aims at looking for an optimized combination of

informative regions by performing the CSMWPLS procedure for

every informative region step by step.

Recently, comparative studies about advantages and limita-

tions of net-analyte signal (NAS) based methods and PLS cali-

bration in mixture analysis have been performed.19,20 The use of

signal filtering algorithms such as NAS may help simplify cali-

bration models and construct models with an adequate predictive

ability. NAS calibration method, previously described by

Lorber,21 has been used for the reduction of noise (i.e., to isolate

the analyte signal) and describing the part of a spectrum that the

model relates to the predicted quantity. A part of mixture spectra

is directly related to the concentration of analyte. The NAS

vector was calculated and used in the corresponding PLS model

to predict the unknown concentration for informative and

combination spectral regions in our data.

In the present work, MWPLSR and NAS multivariate cali-

bration methods were applied to the simultaneous determination

of C.I. Disperse Blue 183, C.I. Disperse Blue 79, C.I. Disperse

Red 82, C.I. Disperse Red 65, C.I. Disperse Yellow 211, and C.I.

Disperse Orange 25 by UV-vis spectrophotometry. The absorp-

tion spectra of the six disperse dyes were recorded between 320

and 680 nm and the best informative wavelength regions were

selected by MWPLSR for each dye separately. A modified

changeable size moving window and searching combination

moving window wavelength selection strategies were employed

to enhance the predictions of multivariate calibration methods,

and to investigate the effect of wavelength selection on the

performance of the NAS-PLS method. Root means square errors

were calculated for each dye as comparison criteria. To see how

well the calibration set predicts the concentration of six dyes; two

independent validation sets were generated. It was found out that

NAS-PLS, MWPLSR and the known validation set results were

compatible. The results also demonstrate that MWPLSR and

NAS multivariate calibration methods can be applied success-

fully to a highly complex mixture of samples.
2. Theoretical background

2.1 Moving window partial least squares regression

(MWPLSR)

MWPLSR is a wavelength interval selection method to search

for informative spectral regions for the multi-component
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overlapped spectral analysis. MWPLSR is applied to these

informative regions through spectra for optimizing and

exploring the best optimized informative regions as either an

individual region or combination of the informative regions.16,22

PLS is an extension of the multiple linear regression model. In

its simplest form, a linear model specifies the relationship

between the spectra in the window (X), and the concentrations of

an analyte (c), so that;

c ¼ Xb + e (1)

where X is an m � n matrix collecting m spectra in rows;

including n spectral points, c is an m � 1 vector of concentration

of analytes (m: the number of analytes, n: wavelength points), e is

the error vector associated with c, b is the regression coefficient.

In this study, an informative spectral window starting at the ith

spectral channel and ending at the (i + h� 1)th spectral channel

was constructed. The fixed window size, h, is selected as 7

through the spectral region (Fig. 1). The window was moved over

the whole spectral region between 320 and 680 nm. For every

window, a PLS model with a selected PLS component using

cross-validation was constructed and the model was evaluated by

the root mean square error (RMSE). Through this process, the

informative regions having peak-like shapes with a low value of

the RMSE can easily be found.
2.2 Searching combination moving window partial least squares

(SCMWPLS)

SCMWPLS was used for searching the optimized combinations

of informative regions based on the optimized informative

regions.15,18 The first informative region obtained by MWPLSR

was optimized by changing the moving window size from 1 to p

for a given informative region with p spectral points. For every

sub-region the window was moved from the first spectral point to

the (p � w + 1)th point over the region. The sub-region with the

smallest value of RMSE was considered as the optimized spectral

interval which can be found by CSMWPLS.14 Although these

sub-regions are optimum in their corresponding region, they

cannot show an optimum performance. Therefore it is necessary

to develop a method to search for the optimized combination of

informative regions. The sub-regions with the same number of

PLS components in successive windows were combined to search
Anal. Methods, 2009, 1, 208–214 | 209



Fig. 2 Scheme for explanation of SCMWPLS.

Fig. 3 Scheme of the methodology for NAS calculation.
second optimum sub-regions at different wavelength intervals.

The window was moved step by step in these first combined

spectral regions to search for the second optimum region as

illustrated in Fig. 2. Finally, the optimum spectral regions were

obtained by combining each window with the smallest RMSE

(Wa, Wb, Wc.) of second optimum informative regions. A new

PLS model with a selected PLS component was constructed, and

RMSE was calculated for every window and combination. The

region with the smallest value of RMSE was considered as the

final optimized spectral interval.

In SCMWPLS, the region with the smallest RMSE was always

selected as the base-region. A rational base-region selected

should construct such a PLS model that the RMSE of the model

is expected to reach an acceptable error level with a relatively

small number of PLS components. Therefore, a maximum

number of PLS component is constrained in this algorithm to

avoid selecting the smallest RMSE with a relatively high number

of PLS components; i.e., the selected number of PLS components

by cross validation must not be larger than the maximum

number of PLS components. The number of PLS components

was determined to be the number where the RMSE begins to

decrease insignificantly with the increase of PLS components.

This number of PLS components was considered to be the

maximum PLS component number.
2.3 Net analyte signal calculations (NAS)

The NAS was described by Lorber21 for an analyte, k, in a given

mixture as part of its spectrum, which is related to the analyte

and orthogonal to the interferents. The NAS in the most general

scenario is then calculated by projecting spectrum r onto the

space defined by the interferents (X-k), the NAS being the

orthogonal resultant (r*), which is defined as

r* ¼ [I � XT
�k (XT

�k) + ]r (2)
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X data matrix is split into two containing spectral information

pertaining to the analyte k, Xk, and to all other variability

sources, X�k, including the contribution of the interferents (X ¼
Xk + X�k) by the NAS algorithm.

Different algorithms have been proposed for NAS calcula-

tions.13,23–31 In this work, we used the NAS algorithm in order to

obtain the NAS for multivariate calibration. The methodology

for NAS calculation proposed was depicted in Fig. 3. In the

proposed procedure, first matrix XA was calculated by recon-

structing from A principal components with standardizing of the

original data. Second, the NAS vectors were calculated accord-

ing to Lorber et al.21 Then the calculated NAS vectors and

concentration values (Y) were used for the PLS calibration. The

spectra for the prediction samples were centered by subtracting

the average spectrum for the calibration samples and recon-

structed from A principal components. Later, the NAS vectors of

prediction samples were calculated and used in the PLS model

for prediction of unknown concentration.
3. Experimental

3.1 Reagents and sample preparation

Six disperse dyes including C.I. Disperse Blue 183, C.I. Disperse

Blue 79, C.I. Disperse Red 82, C.I. Disperse Red 65, C.I.

Disperse Yellow 211 and C.I. Disperse Orange 25 obtained from

Setas Company (Turkey) were used in this study. The dye solu-

tions were prepared in double distilled water (Millipore Waters

Milli Q distillation unit). Aliquots of the stock solutions were

added into 25 mL calibrated flasks to obtain concentrations

between 1.806 and 9.03 mg L�1 of C.I. Disperse Blue 183, 1.526

and 7.63 mg L�1 of C.I. Disperse Blue 79, 1.674 and 8.37 mg L�1

of C.I. Disperse Red 82, 0.884 and 4.42 mg L�1 of C.I. Disperse

Red 65, 1.075 and 5.375 mg L�1 of C.I. Disperse Orange 25 and

1.092 and 5.46 mg L�1 of C.I. Disperse Yellow 211 for the cali-

bration design matrix.
3.2 UV-vis spectroscopy

The absorption spectra were recorded between 200 and 800 nm,

employing a double beam UV-vis spectrometer (Shimadzu,

model UV-1601) equipped with 10 mm quartz cuvettes. The

digital resolution of the spectra was in 1 nm. The spectral region

between 320 and 680 nm was selected for the calculations of

MWPLSR and NAS. MWPLSR and NAS analysis were calcu-

lated with programs written in MATLAB (v. 6.5 for windows).
3.3 Calibration set

A calibration design set for 25 samples was used based on five

levels, which was coded between �2 and +2 for each compound

in the mixture. The levels relate to the concentrations of
This journal is ª The Royal Society of Chemistry 2009



Fig. 4 UV-vis spectra of six disperse dyes (A; C.I. Disperse Blue 183

(10 mg L�1), B; C.I. Disperse Blue 79 (10 mg L�1), C; C.I. Disperse Red 82

(5 mg L�1), D; C.I. Disperse Red 65 (5 mg L�1), E; C.I. Disperse Orange

25 (10 mg L�1) and F; C.I. Disperse Yellow 211 (10 mg L�1).

Fig. 5 Selection of informative regions obtained by the first step of

MWPLSR for (a) C.I. Disperse Blue 183, (b) C.I. Disperse Blue 79, (c)

C.I. Disperse Red 82.
compounds. The same calibration design was used with our

previous study.2 Concentration of the calibration set solutions

was prepared within the linear range of the calibration graph.

The design has a value of r12 ¼ 0.0, so the two concentration

vectors are orthogonal to one another.32 The difference vector

[1320] and cyclical generator �2, �1, 2, 1 were used in the cali-

bration design matrix. The construction of multilevel calibration

designs has been described in other literature.33

3.4 Validation set

To see how well the calibration set predicts the concentrations of

six dyes, two independent validation sets were generated con-

taining surfactant agent to obtain the same matrix components

with real sample. The validation set 1 has a value of r12¼ 1.0 and

the validation set 2 has a value of r12 ¼ 0.0.2 The two validation

sets consist of 25 spectra. The spectral region between 320 and

680 nm was selected as optimum for the analysis, which implies it

will work for 361 experimental points for each spectrum.

3.5 Real sample

The real samples in this study were collected from waste water of

a dyeing process containing six disperse dyes. The disperse

dyeing procedure was applied in a lab-scale LabDye HT (High

Temperature) dyeing machine. The dye-bath (150 ml) contains

disperse dye and anionic-nonionic surfactant (Bestol 11A) as the

dye-leveling agent. A 10:1 liquid ratio using 15 g polyester fabric

was used and 1 ml of surfactant agent was added to each dye-

bath. Polyester fabric was immersed in the dye-bath at 60 �C, the

temperature was raised from 60 �C to 130 �C. Dyeing was

continued for 50 min at 130 �C, the temperature was then

reduced to 70 �C. The dyes in waste water were measured spec-

trophotometrically over the range of 320–680 nm. The concen-

trations of each dye were determined by a univariate calibration

method as 10.91 mg L�1 for C.I. Disperse Blue 183, 16.15 mg L�1

for C.I. Disperse Blue 79, 191.90 mg L�1 for C.I. Disperse Red

82, 21.2 mg L�1 for C.I. Disperse Red 65, 207.67 mg L�1 for C.I.

Disperse Orange 25, and 23.5 mg L�1 for C.I. Disperse Yellow

211. Real samples were prepared from those waste waters

between 0.5 and 2.5 mg L�1 of C.I. Disperse Blue 183, C.I.

Disperse Blue 79, C.I. Disperse Red 65, C.I. Disperse Yellow

211, 2 and 6 mg L�1 of C.I. Disperse Red 82 and C.I. Disperse

Orange 25 for NAS analysis as the validation set 1 which has

a value of r12 ¼ 1.0.

4. Results and discussion

4.1 MWPLSR analysis

UV-vis spectra for the standard dyes shown in Fig. 4 were

recorded in the range 320–680 nm. The spectra are dominated by

two broad absorption bands when the UV-vis spectra of six

disperse dyes with various concentrations were recorded. In

those spectra, concentration-dependent absorbance variations

are very small. Therefore, the whole spectral region from 320 to

680 nm was used to find the informative regions by MWPLSR.

In the first step, the informative regions that show the smallest

error were selected by MWPLSR (Fig. 1). In the second step,

another new sub region was selected to search second
This journal is ª The Royal Society of Chemistry 2009 Anal. Methods, 2009, 1, 208–214 | 211



Fig. 6 Selection of informative regions obtained by the first step of

MWPLSR for (a) C.I. Disperse Red 65, (b) C.I. Orange 25, (c) C.I.

Disperse Yellow 211.
informative and combination regions from each window in the

first step (Fig. 2).

The informative regions by the first step obtained by

MWPLSR for C.I. Disperse Blue 183, C.I. Disperse Blue 79, C.I.

Disperse Red 82, C.I. Disperse Red 65, C.I. Disperse Yellow 211

and C.I. Disperse Orange 25 are shown in Fig. 5–6. Informative

regions in the 455–468, 470–484 and 546–567 nm for C.I.

Disperse Blue 183; 425–450, 542–557, 576–609 and 618–649 nm

for C.I. Disperse Blue 79; 539–587 nm for C.I. Disperse Red 82;

491–515, 534–568 and 573–585 nm for C.I. Disperse Red 65;

320–436 and 431–451 nm for C.I. Disperse Orange 25; 494–517

nm for C.I. Disperse Yellow 211 regions can be provided by

MWPLSR. It is clearly shown in Fig. 5–6 that informative

regions obtained well as in C.I. Disperse Blue 79 are in accor-

dance with absorption bands of each of the disperse dyes. The

minimum RMSE values were obtained at the maximum absor-

bance regions of C.I. Disperse Blue 79. This indicates that

informative regions have no interference by other dyes in the

mixtures. A clear informative region of 576–609 nm (Fig. 5b) was

observed for C.I. Disperse Blue 79, which can easily be attributed
212 | Anal. Methods, 2009, 1, 208–214
to the absorption band in the same region. The absorption band

in the visible region located at 580 nm is due to the azo linkage of

C.I. Disperse Blue 79.
4.2 SCMWPLS analysis

The SCMWPLS algorithm was performed to search for the

optimized combinations of the informative regions. All these

informative regions by the second step and the whole region

were used to obtain optimum informative regions for PLS

models with the calibration set by increasing the window size

step by step, and then two validation sets including 25 samples

were used to validate the performance of the models.

CSMWPLS finds the optimized sub-regions of informative

regions, which can improve the predictions of the PLS models.

The two independent validation sets were generated with values

of r12 at 0.0 and 1.0 to see how well the calibration set predicts

the concentrations of the six dyes. Leave-one out cross-vali-

dation procedure was used to select the optimum number of

PLS components for each dye and the number of factors that

produced the least RMSE was selected as the optimum

value.14,17 The selected PLS components and optimum RMSEs

of the predictions by PLS calibration methods for a calibration

set and two validation sets are listed in Tables 1–6 (See ESI †).

The validation sets show similar results with small RMSEs.

This indicates that any of the validation sets with r12 ¼ 0.0 and

r12 ¼ 1.0 can be used to validate the calibration models built

for the prediction of dyes in complex mixtures. Optimum

spectral regions are different for each dye in terms of the

number of spectral regions, RMSE and the number of PLS

components.

C.I. Disperse Blue 183 has three optimum informative regions

suggested by CSMWPLS, one direct combination of these

regions selected by SCMWPLS and a whole region as listed in

Table 1 (See ESI †). It is clear that the best individual region with

the lowest RMSE values are 0.095, 0.601 and 0.567 for calibra-

tion and validation sets respectively with six PLS components

located in the combination region. The optimized combination

improves the prediction results by using the SCMWPLS. In

spectroscopic data, it is expected to get the same components as

compounds present in the mixture in the case of non-highly

overlapped spectra in reality when standards are used during the

calibration step. The results confirm that the calibration was well

modeled by the number of components selected during the

validation. The optimum informative region in the 546–567 nm

shows higher RMSE error than the other two regions in the

calibration set with three PLS components due to the higher

interference of C.I. Disperse Blue 79. However, better validation

errors were obtained in this region and this indicates that the

performance of the prediction was better even in the case of more

overlapped spectra.

For the second disperse dye, C.I. Disperse Blue 79 (Table 2,

See ESI †), four optimum informative regions and one combi-

nation region were found by CSMWPLS and SCMWPLS. The

optimum informative regions in the 542–557 and 576–589 nm

show the smallest RMSE errors than other optimum informative

regions for calibration set, and better prediction was obtained in

the 542–557 nm for two validation sets. The lowest error was

obtained for the combination region selected by SCMWPLS. On
This journal is ª The Royal Society of Chemistry 2009



the other hand the number of PLS components is three for all

four optimum informative regions, but for combination regions

the number of PLS components is six. It is clear that the infor-

mative region in the 576–589 nm and combination region in the

320–648 nm are the most optimum informative regions selected

by CSMWPLS and SCMWPLS for C.I. Disperse Blue 79. On the

contrary to our previous study,2 higher RMSE was obtained for

C.I. Disperse Blue 79 by conventional PLS calibration due to the

narrow spectral region used in this study. It is possible that

information was spread on the whole spectral range and a vari-

able selection per interval could automatically reduce the infor-

mation and induce an increase of RMSE compared with full-

spectrum PLS.34

C.I. Disperse Red 82, C.I. Disperse Orange 25 and C.I.

Disperse Yellow 211 exhibit different behavior to other dyes in

that they have only one optimum informative region by the

second step obtained by SCMWPLS (Tables 3, 5, 6, see ESI †),

and also each optimum informative region of these disperse dyes

can provide better prediction errors than the whole spectral

region. The number of PLS components for C.I. Disperse

Orange 25 and C.I. Disperse Yellow 211 are five for optimum

informative region, but it is seven for C.I. Disperse Red 82. The

reason for this might be that the spectral points are highly

overlapped. C.I. Disperse Orange 25 has the lowest RMSE in the

informative region of 431–451 nm which can be attributed to the

absorption bands in the same region (Fig. 6b). C.I. Disperse Red

82 and C.I. Disperse Yellow 211 have maximum absorption

bands in the 476–523 nm (Fig. 5c) and 413–448 nm (Fig. 6c)

regions respectively. However, these compounds are highly

overlapped in these regions, so that the corresponding informa-

tion regions show high RMSE values.

C.I. Disperse Red 65 also shows three optimum informative

regions and one combination region as in C.I. Disperse Blue 183.

Optimum informative, combination regions and the number of

PLS components were illustrated in Table 4 (See ESI †). The

combination region suggested by SCMWPLS is the most

optimum informative region because the model, including this

individual region, provides the smallest RMSE errors and the

number of PLS components was higher than the three regions.

Models including the two individual regions in the 491–498 and

534–546 nm ranges, respectively, show high RMSE errors due to

the more overlapping points between these wavelengths. The

informative region in the 573–585 nm range demonstrates better

PLS model building since better calibration and validation errors

were obtained in this region. On the other hand the informative

region in the 491–515 nm range show the maximum absorption

bands in the same region which has the second lowest RMSE

(Fig. 6a). It is clear that SCMWPLS can decrease the prediction

error of the PLS model significantly (Table 4, see ESI †). If more

than one informative region is available, a combination of

regions may be more important.

The comparisons of prediction and validation results of six

dyes in environmental mixtures clearly demonstrates the poten-

tial of SCMWPLS. All these SCMWPLS results, as also proved

in literature,14,15 provide the best prediction results for the PLS

calibrations of C.I. Disperse Blue 183, C.I. Disperse Blue 79, C.I.

Disperse Red 82, C.I. Disperse Red 65, C.I. Disperse Yellow 211

and C.I. Disperse Orange 25 in highly overlapped spectra of

mixtures.
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4.3 NAS analysis

The NAS calibration method has been used for reduction of

noise and describing the part of a spectrum that the model relates

to the predicted quantity of the compounds in the mixture.16 The

NAS pretreatment was applied to standardized data recon-

structed from PCA. The calculated NAS vector for the validation

samples following standardization and reconstruction of their

spectra from principal components was used to estimate the

corresponding analyte concentrations by PLS. Tables 1–6 (see

ESI †) show the RMSEs for the prediction of concentration of

each dye after NAS treatment.

As can be seen from Tables 1–6 (see ESI †), the prediction

results of validation set 1 provided by the model were very similar

to validation set 2 as obtained in CSMWPLS. The RMSEs

calculated by CSMWPLS in the optimum informative regions

455–468, 470–481 and 546–567 nm were smaller than the RMSEs

calculated by NAS-PLS for validation sets, whereas the RMSE

calculated by SCMWPLS in the region of 320–567 nm was higher

than the RMSE calculated by NAS-PLS for calibration and

validation sets (Table 1, see ESI †). It is clear that the optimum

region was obtained by SCMWPLS for C.I. Disperse Blue 183

for NAS-PLS. However, only the RMSE error calculated by

NAS-PLS in the informative region of 425–445 nm was higher

than the RMSEs calculated by CSMWPLS for validation sets

(Table 2, see ESI †). The RMSEs of the other optimum infor-

mative regions by CSMWPLS for C.I. Disperse Blue 79 were

higher than the RMSEs calculated by NAS-PLS. The results are

as expected when NAS pretreatment was applied to informative

regions.

The RMSEs results obtained by NAS-PLS for C.I. Disperse

Red 82, C.I. Disperse Orange 25, C.I. Disperse Yellow 211 in

informative regions and C.I. Disperse Red 65 including combi-

nation region were smaller than the RMSEs by CSMWPLS

(Table 3,5,6, see ESI †). C.I. Disperse Red 65 only has combi-

nation region among these dyes (Table 4, see ESI †). The number

of PLS components is 7, 5, 5 and 5 for C.I. Disperse Red 82, C.I.

Disperse Orange 25, C.I. Disperse Yellow 211 and C.I. Disperse

Red 65, respectively. Smaller RMSE was obtained for C.I.

Disperse Red 82, which has 7 PLS components.

As a result, the combination regions for C.I. Disperse Blue

183, C.I. Disperse Blue 79 and C.I. Disperse Red 65, the

informative regions in the 539–582 nm for C.I. Disperse Red

82, 320–390 nm for C.I. Disperse Orange 25 and 494–517 nm

for C.I. Disperse Yellow 211 were found to be the most

optimum informative region by NAS-PLS. The prediction

capability of the NAS-PLS was proven when compared with

PLS prediction in the case of whole spectral region. In order to

evaluate whether there are significant differences between the

concentrations found for each dye and each calibration

method, the F-test (at the 95% confidence level) was employed

to compare the RMSE values. The results showed no signifi-

cant (F0.95 < Fcrit) differences with any of the calibration

methods for C.I. Disperse Blue 183 and C.I. Disperse Red 65

determination. However, NAS-PLS method was much better

for predicting the concentrations of C.I. Disperse Blue 183 and

C.I. Disperse Red 65 in the calibration and validation sets. For

the rest of the dyes, there were significant differences between

NAS-PLS and conventional PLS calibration methods. Since the
Anal. Methods, 2009, 1, 208–214 | 213



NAS-PLS method gave the lowest RMSE values, this was the

method that adopted for predicting dye concentrations in real

samples.

4.4. Determination of dyes in real samples

In order to test the applicability of the proposed method to the

analysis of real samples, the method was applied to a waste water

containing six disperse dyes obtained as described in Section 3.2.

The determination of disperse dyes in textile waste water was

investigated and the results were summarized in Table 7 (see ESI

†). In spite of the complexity of the sample matrix, the employed

NAS-PLS method gave acceptable results except for C.I.

Disperse Red 82. It must be emphasized that the high and low

predictions obtained by NAS-PLS and univariate calibration for

C.I. Disperse Red 82 in waste water are quite reasonable taking

into account the high spectral overlap with other dyes and the

lower multivariate sensitivity and selectivity. To validate the

proposed NAS-PLS calibration method, the dyes that are

present in the real sample were analyzed by univariate calibration

methodology. The univariate calibration method gave similar

results with NAS-PLS in combination with the spectral region.

However, lower results were obtained for C.I. Disperse Red 82

and C.I. Disperse Orange 25 dyes which have only one infor-

mative region. The superiority of the NAS-PLS method is

expected because the informative regions were used in multi-

variate calibration, while in the univariate method, dyes were

determined using single wavelength. Therefore, the proposed

method could be used for the quantification of dyes in waste

water. The dyes that are present in waste water were analyzed by

HPLC methodology to validate the conventional PLS method in

our previous study.2 The HPLC method has higher sensitivity

and selectivity, while in UV-vis spectrophotometry the dyes were

determined without separation from the sample matrix.

Compared to HPLC method, the proposed NAS-PLS method

was rapid, easy and of low cost for the quantification of disperse

dyes in waste water using simple UV-vis spectrophotometry.

5. Conclusion

The importance of selecting informative and optimum spectral

regions by MWPLSR and SCMWPLS in NAS-PLS calibrations

using real samples was demonstrated. Different spectral ranges

depending on the complexity of the spectra can be used to

construct PLS calibration and validation models. The prediction

ability of the calibration models using selective and whole spec-

tral regions was evaluated. SCMWPLS significantly improved

the NAS-PLS models compared to the models based on the

whole spectral region.

Experimental design and the nature of the validation sets play

an important role when assessing the quality of calibration

models. Two experimental design sets with r12¼ 0.0 and r12¼ 1.0

in validation of the PLS model gave similar low errors as 0.429

and 0.414, respectively. It was shown that any of the validation

sets can be used to see how well the calibration set predicts the

concentrations of each of the compounds in the mixture.

Comparing the results obtained by using the whole spectral

region, optimum informative and combination regions for

compounds, NAS improves the prediction ability in terms of
214 | Anal. Methods, 2009, 1, 208–214
corresponding PLS calibration. The PLS models yield better

prediction results by using the NAS pretreated spectra in the

combination region rather then informative and whole spectral

regions. The present study has demonstrated that SCMWPLS

can select optimum combination of informative regions

successfully, even for highly overlapped spectra mixtures and

NAS-PLS can improve the performance of PLS calibration

models for quantitative determination of components in

complicated environmental samples.
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