การพัฒนาวิธีโวลแทมเมตรีสำหรับการหาปริมาณแคดเมียมและ ตะกั่วที่ถูกซะจากกระเบื้องคอนกรีตมุงหลังคา Development of voltammetric method for determination of

cadmium and lead released from concrete roofing tiles

จรูญ จันทร์สมบูรณ์'', จรูญ จักร์มุณี² Jaroon Junsomboon'', Jaroon Jakmunee²

บทคัดย่อ

ได้พัฒนาวิธีในการวิเคราะห์หาปริมาณแคดเมียมและตะกัว ที่ถูกซะออกมาจากกระเบื้องคอนกรีตมุงหลังคาโดยวิธีดิฟเฟอร์ เรนเชียสพัลส์แอโนดิกสทริปปิงโวลแทมเมตรี ตัวอย่างจะถูก สกัดด้วยน้ำเป็นเวลา 24 ชั่วโมง ตามวิธีมาตรฐาน มอก.535-2556 เติมสารละลายตัวอย่างที่สกัดได้ 5 มิลลิลิตร และ 5 มิลลิตรของร้อยละ 4 โดยปริมาตรต่อปริมาตรกรดแอซิติกลง ในโวลแทมเมตริกเซลล์ หลังจากนั้นสารละลายจะถูกกวนที่ อัตราความเร็ว 2000 รอบต่อนาที่พร้อมกับกำจัดตัวรบกวนด้วย แก๊สไนโตรเจนเป็นเวลา 3 นาที ก่อนที่จะทำการสะสมปริมาณ ้โลหะโดยการให้ศักย์ไฟฟ้าคงที่-0.9 โวลล์ อย่างต่อเนื่องเทียบ กับขั้วอ้างอิง ซิลเวอร์/ซิลเวอร์คลอไรด์ ที่ขั้วแขวนปรอทหยด (HMDF) เป็นเวลา 45 วินาที หลังจากนั้นทำการสแกนด้วยวิถี ดิฟเฟอร์เรนเซียสพัลส์จากศักย์ไฟฟ้า-0.90 โวลล์ ไปยังศักย์ ไฟฟ้า-0.10 โวลล์และทำการบันทึกออกมาเป็นโวลทาโมแกรม พื่คสัญญาณสูงสุดของแคดเมียมและตะกั่วอยู่ที่-0.555 โวลล์ และ-0.364 โวลล์เมื่อเทียบกับขัวอ้างอิง ซิลเวอร์/ซิลเวอร์คลอไรด์ ตามลำดับ ทำการวิเคราะห์หาปริมาณโดยวิธีเติมสารมาตรฐาน ้ค่าเบี่ยงเบนมาตรฐานสัมพัทธ์ที่ความเข้มข้น 8 ไมโครกรัมต่อ ้ลิตรของโลหะทั้งส^{ื่}องชนิดจำนวน 11 ซ้ำ อยู่ในช่วง 1.59-1.74 ร้อยละการคืนกลับโดยทำการเติมสารมาตรฐานที่ความเข้มข้น 8 ไมโครกรัมต่อลิตร ของแอดเมียมและตะกั่วลงไปในสารละลาย ตัวอย่าง พบว่าเท่ากับ 107 และมีขีดจำกัดของการตรวจวัด เท่ากับ 0.15 ไมโครกรัมต่อลิตร ของโลหะทั้งสอง พบว่าปริมาณ แคดเมียมและตะกั่ว ที่ถูกซะออกมาจากตัวอย่างกระเบื้อง คอนกรีตมุงหลังคาอยู่ในช่วง <0.15-0.55 ไมโครกรัมต่อลิตร และ <0.15- 11.95 ไมโครกรัมต่อลิตร ตามลำดับ ซึ่งต่ำกว่า เกณฑ์มาตรฐานผลิตภัณฑ์อุตสาหกรรมของไทยกำหนด (มอก. 535-2556) วิธีที่น้ำเสนอนี้ไม่ยุ่งยาก สะดวก และมีความไวใน การวิเคราะห์มากกว่าวิธีมาตรฐานที่ใช้เทคนิคอะตอมมิกสเปค โตรโฟโตเมตรี

Abstract

Differential pulse anodic stripping voltammetric method has been developed for determination of cadmium and lead released from concrete roofing tiles. The sample was extracted with water for 24 h according to the TIS 535-2556 standard method. An aliguot of 5 mL of the extracted solution and 5 mL of 4% v/v acetic acid solution were put in a voltammetric cell. Then, the solution was stirred at 2000 rpm and purged with nitrogen gas for 3 min before the deposition of the metals was carried out by applying a constant potential of -0.90 V versus Ag/AgCl to a hanging mercury drop electrode (HMDE) for 45 s. After that a differential pulse scanning waveform from -0.90 to -0.10 V was applied and a voltammogram was recorded. Peak current of cadmium and lead were measured at peak potentials of -0.555 and -0.364 V vs Ag/AgCl, respectively. Standard addition procedure was used for quantification. Relative standard deviation for 11 replicate determinations of 8 μ gL⁻¹ of both metals were in the range of 1.59-1.74%. Percentage recoveries obtained by spiking 8 µgL⁻¹ of cadmium and lead to the sample solution were found to be 107% and with detection limit of 0.15 μ gL⁻¹ for both metals. It was found that contents of cadmium and lead released from the concrete roofing tile samples were in the range of <0.15-0.55 μ gL⁻¹ and <0.15-11.95 μ gL⁻¹, respectively, which are lower than the regulated values of the Thailand industrial standard (TIS 535-2540). The proposed method is simpler, more convenient and more sensitive than the standard method based on an atomic absorption spectrophotometry.

คำสำคัญ: ดิฟเฟอร์เรนเชียสพัลส์แอโนดิกสทริปปิงโวลแทมเมตรี แคดเมียม ตะกั่ว กระเบื้องคอนกรีตมุงหลังคา Keywords: Differential pulse anodic stripping voltammetry, Cadmium, Lead, Concrete roofing tiles

¹กรมวิทยาศาสตร์บริการ ²ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

*E-mail address: jaroon@dss.go.th

http://bas.dss.go.th

^{*}Corresponding author. E-mail address: jaroon@dss.go.th

และตะกัวด้วยเทคนิค Flame AAS หรือ Electrothermal AAS

้สำหรับเทคนิคอื่น ๆ ที่ถูกนำมาใช้ ได้แก่ แอโนดิูกสทริปปิง โวลแทมเมตรี (ASV) ซึ่งมีการให้ศักย์ไฟฟ้าคงที่ ในขั้นตอนเพิ่ม ้ความเข้มข้นของโลหะบนขั้วไฟฟ้า (electrodeposition) โดย สามารถวิเคราะห์หาปริมาณแคดเมี่ยมและตะกัวได้โดยตรง พร้อมกัน [6-13] โดยมีการเพิ่มความเข้มข้นด้วยการสะสม ปริมาณโลหะบนขั้วหยดปรอทแขวน (HMDE) หรือขั้วไฟฟ้า ฟิล์มปรอท [6-8] ปัจจุบันได้มีการใช้ขัวไฟฟ้าที่เป็นมิตรกับสิ่ง แวดล้อมมากขึ้น ได้แก่ ขั้วไฟฟ้าฟิล์มบิสมัท [9-12,14-18,20] ้ขั้วไฟฟ้าคาร์บอน[19] หรือ ขั้วไฟฟ้าเงินอะมัลกัมแบบสั่น [21] หลังจากนั้นจะทำการสแกนศักย์ไฟฟ้าไปในทางบวก (ขั้วบวก) เกิดปฏิกิริยาออกซิเดชันของโลหะที่สะสมบนขั้วไฟฟ้า โดยจะมี ้ศักย์ไฟฟ้าที่เกิดขึ้นที่มีความเฉพาะเจาะจงสำหรับแต่ละโลหะ ้อย่างไรก็ตามวิธีนี้สามารถตรวจจับโลหะในสภาวะไอออนอิสระ เท่านั้น และจะถูกรบกวน ในการวิเคราะห์จากสารอินทรีย์บน พื้นผิวที่ใช้งาน [6] จึงทำให้ขัวไฟฟ้าได้รับการพัฒนาเพื่อเพิ่ม ความไว และความเฉพาะเจาะจง สำหรับการวิเคราะห์กลุ่ม ตัวอย่างที่มีความซับซ้อนมาก [8-10,15-21]

สำหรับสารสกัดจากกระเบื้องคอนกรีตมุงหลังคานั้นจะ ปราศจากสารอินทรีย์ ดังนั้น ในงานวิจัยนี้จึงเลือกใช้วิธี ASV ร่วมกับขั้วหยดปรอทแขวน (HMDE) ในการวิเคราะห์หาปริมาณ แคดเมียมและตะกั่ว โดยสารละลายอิเล็กโทรไลต์ที่ถูกนำมา ใช้อย่างแพร่หลายในการวิเคราะห์หาปริมาณแคดเมียมและ ตะกั่ว คือ อะซิเตทบัฟเฟอร์ [6-10,14-18,21] ในงานวิจัยนี้กรด อะซิติกซึ่งมีความบริสุทธิ์สูงกว่าอะซิเตทบัฟเฟอร์ได้ถูกนำมาใช้ เป็นสารละลายอิเล็กโทรในการวิเคราะห์ด้วยเทคนิค ASV ตาราง ที่ 1 ได้สรุปงานวิจัยที่ใช้วิธี ASV สำหรับการวิเคราะห์หาปริมาณ แคดเมียมและตะกั่ว เมื่อเปรียบเทียบกับวิธีมาตรฐาน FAAS วิธีที่พัฒนาขึ้น มีความสะดวกในการใช้งานมากกว่า มีความไว ในการวิเคราะห์ที่ดีขึ้น รวดเร็วขึ้น ใช้สารเคมีน้อย มีค่าใช้จ่าย ในการวิเคราะห์ต่ำ รวมทั้งเครื่องมือและวัสดุที่ใช้วิเคราะห์มี ราคาไม่แพง

1. บทน้ำ (Introduction)

10

กระเบื้องคอนกรีฺตมุงหลังคาเป็นวัสดุก่อสร้างทั่วไปที่ตอบ สนองความต้องการขั้นพื้นฐานของมนุษย์ ในการก่อสร้างที่อยู่ อาศัย โดยที่กระเบื้องคอนกรีตมุงหลังคา ทำมาจากปูนซีเมนต์ ผสมมวลผสมคอนกรีตและน้ำเข้่าด้วยกัน โดยมีการใช้้สีเคลือบ บนผิวกระเบื้องคอนกรีต เป็นสีต่างๆ เพื่อให้เกิดความสวยงาม ตามความต้องการของผู้บริโภค โดยในปัจจุบันกระเบื้องคอนกรีต ้ได้รับความนิยมน้ำมาใช้ในการปลูกสร้างที่อยู่อาศัยมากกว่า กระเบื้องมุงหลังคาชนิดอื่น ๆ สำหรับในประเทศไทยผลิตภัณฑ์ กระเบื้องคอนกรีตมุงหลังคา มีแหล่งผลิตส่วนใหญ่ กระจายไป ตามจังหวัดในภูมิภาคต่าง ๆ ของประเทศไทย อาทิเช่น กรุงเทพฯ นครปฐม ปทุมธานี ลพบุรี สระบุรี ชลบุรี ลำพูน ขอนแก่น และ ้นครศรี้ธรรมราช เป็นต้น โดยแหล่งที่มาที่แตกต่างกันของวัตถุดิบ จากธรรมชาติ และสีที่ใช้ในกระบวนการผลิต อาจมีสารที่เป็น อันตรายต่าง ๆ เช่น โลหะหนักละลายออกมาเมื่อนำไปใช้งาน ทำให้ต้องมีการควบคุมคุณภาพกระเบื้องคอนกรีตมุงหลังคา ้โดยที่แคดเมียมและตะกั่วเป็นที่รู้จักกันดีว่าเป็นโลหะที่มีพิษ โลหะเหล่านี้จะพบในบริเวณพื้นผิวกระเบื้องคอนกรีตมุงหลังคา สำหรับประเทศไทยจะถูกควบคุมโดยมาตรฐานผลิตภัณฑ์ อุตสาหกรรม โดยกำหนดผลที่เกิดขึ้นกับน้ำของผลิตภัณฑ์ กระเบื้องคอนกรีตมุงหลังคาที่กำหนดปริมาณแคดเมียมและ ตะกั่ว ที่ยอมให้มีได้ต้องไม่เกินเกณฑ์กำหนดสูงสุดตามมาตรฐาน ผลิตภัณฑ์อุตสาหกรรม (มอก. 535-2556) [1] วิธีการสกัดโลหะ จากกระเบื้องคอนกรีตมุงหลังคาทำได้โดยการแช่ตัวอย่างลงไป ในนำปราศจากไอออนในภาชนะที่เก็บไว้ที่อุณหภูมิ 23 ±2°C เป็นเวลา 24 ± 1 ชั่วโมง และทำการวิเคราะห์โลหะในสารละลาย ที่สกัดออกมาได้ ด้วยเทคนิคอะตอมมิคแอบซอร์พชันสเปกโทร ้ โฟโตเมตรี (AAS) ซึ่งวิธีนี้ต้องมีขั้นตอนยุ่งยากและใช้เวลานาน และมีขีดจำกัดต่ำสุดในการตรวจวัดค่อนข้างสูง ดังนั้น จึงต้อง ้มีวิธีการและขั้นตอนในการเพิ่มความเข้มข้นหรือแยก เช่น การ ใช้คอลัมน์ที่บรรจุด้วยเรซิน Pb-Spec [2], คีเลตเรซิน Muramac A-1 [3], เรซิน thioureasulfonamide [4] และเทคนิคบีทอินเจคชัน โดยใช้วัสดุที่ดูดซับ [5] ก่อนที่จะวิเคราะห์หาปริมาณแคดเมียม

Technique	Determination	Sample	Detection condition*	Linear range (µgL ⁻¹)**	Detection limit (µgL¹)	Precision (%RSD)	Ref.
SWASV	Cd(II), Pb(II), Zn(II), Cu(II)	glazed ceramic	$\begin{array}{l} \mbox{Hanging mercury drop electrode (HMDE), } E_d \mbox{-}1.20 \\ \mbox{V, } E_f \mbox{0.15 V, } t_d \mbox{45 s, 10 mV/s, } \Delta E \mbox{40 mV, } E_{step} \mbox{10 mV, stir 2000 rpm, } 4\% \mbox{v/v acetic acid} \end{array}$	0 - 200 (t _d 45 s)	$\begin{array}{c} \mbox{Cd(II) 0.25, Pb(II) 0.07,} \\ \mbox{Cu (II)2.7, Zn(II) 0.5 } (t_d \\ \mbox{45 s)} \end{array}$	2.8 - 3.6% (n=11)	13
SI-MSFA-SWASV	Cd(II), Pb(II)	surface water	Bismuth film working electrode (BiFE), E_d -1.10 V, E_f 0.20 V, t_d 90 s, 50mV/s, 0.2 M acetate buffer	10 - 100 (t _d 90 s)	Cd(II) 1.4 (t _d 90 s), Pb(II) 6.9 (t _d 90 s)	2.7 – 3.1% (n=11)	14
SWASV	Cd(II), Pb(II)	-	$\begin{array}{l} Bismuth-glassy \ carbon(Bi/C) \ composite \ electrode, \\ E_d \ -1.20V, \ E_r \ -0.30 \ V, \ t_d \ 300 \ s, \ 20mV/s, \ f \ 50 \ Hz, \\ E_{step} \ 5 \ mV, \ 0.1 \ M \ acetate \ buffer \ (pH \ 4.5) \end{array}$	0 - 100 (t _d 300 s)	Cd(II) 0.49 (t _d 300 s), Pb(II) 0.41 (t _d 300 s)	-	15
DPASV	Cd(II), Pb(II)	river water, human blood	Bismuth- film modified graphite nanofibers –Nafion glassy carbon electrode (BiF/GNFs-NA/GCE), E _d -1.20V, t _a 120 s, ΔE 80 mV, E _{atep} 5 mV, pulse period 0.2s, pulse width 5ms, 0.1 M acetate buffer (pH 4.5)	0.2 - 50 (t _d 120 s)	Cd(II) 0.09 (td 120 s), Pb(II) 0.02 (td 120 s)	1.4 – 2.1% (n=16)	16
SWASV	Pb(II), Cd(II), Zn(II)	river water	Bismuth bulk electrode(BIBE), E _d -1.4 V, E _f -0.35 V, t _d 180 s, E _{step} 4 mV, ∆E 25 mV, f 15 Hz, stir 1200 rpm, 0.1 M Sodium acetate pH 5.0	10 - 100 (t _d 180 s)	Cd(II) 0.93 (td 180 s), Pb(II) 0.54 (td 180 s), Zn(II) 3.96 (td 180 s)	-	17
SI-SWASV	Pb(II), Cd(II)	water, food	Bismuth coated screen- printed carbon nanotube electrode (Bi-SPCNTE), E _J -1.3 V, E _I -0.30 V, E _{step} 4 mV, Δ E 50 mV, f 75 Hz, 0.1 M acetate buffer (pH 3.0)	0.5 - 15	0.01	2.56 - 5.67% (n=10)	18

ตารางที่ 1 แอโนดิกสทริปปิงโวลแทมเมตรีที่วิเคราะห์หาปริมาณแคดเมียมและตะกั่ว

Technique	Determination	Sample	Detection condition*	Linear range (µgL ⁻¹)**	Detection limit (µgL ⁻¹)	Precision (%RSD)	Ref.
SWASV	Pb(II), Cd(II)	several foodstuffs, water	Multi-walled carbon paste electrode (MWCNT), E _d -1.10 V, E _{step} 6 mV E _f -0.22V, t _d 190 s, Δ E 65 mV, f 40 Hz, Britton – Robinson universal buffer pH 3.5	0.4 - 1200 Pb(II) 1.0 - 1200 Cd(II)	Pb(II) 0.25 (t _d 190s) Cd(II) 0.74 (t _d 190s)	2.30 - 3.56% (n=8)	19
SI-SWASV	Pb(II), Cd(II)	rice	Bismuth film/crown ether/Nafion modified screen- printed carbon electrode(Bi-D24C8/Nafion SPCE), E _d -1.2 V, E _f -0.00 V, t _d 180 s, E _{step} 7 mV, Δ E 50 mV, f 70 Hz, 0.5 M HCI	0.5 - 60	Pb(II) 0.11 (t _d 180s) Cd(II) 0.27 (t _d 180s)	-	20
SWASV	Pb(II), Cd(II)	sea water	Vibrating silver amalgam microwire electrode (SAM), E _d -1.2 V, E _f -0.20 V, t _d 60 s, E _{step} 5 mV, ΔE 50 mV, f 50 Hz, 40 mM acetate buffer (pH 4.5)	0.82 - 6.56	Pb(II) 0.066 (t _d 60s) Cd(II) 0.379 (t _d 60s)	-	21
DPASV	Cd(II), Pb(II)	concrete roofing tiles	Hanging mercury drop electrode (HMDE), E _d -0.90 V, E _f -0.10 V, t _d 45 s, 3 mV/s, Δ E 50 mV, stir 2000 rpm, 4%v/v acetic acid	0 - 20 (t _d 45 s)	Pb(II) 0.15 (t _d 45s) Cd(II) 0.15 (t _d 45s)	1.59% (n=11) 1.74% (n=11)	22

^{*} E_{d} = deposition potential, E_{f} = final potential, t_{d} = deposition time, E_{step} = step potential, ΔE = amplitude, f = frequency, rpm = round per min

2. วิธีการวิจัย (Experimental)

2.1 สารเคมี

สารเคมีทั้งหมดเป็นเกรดที่ใช้สำหรับการวิเคราะห์ (Analytical grade) และใช้น้ำปราศจากไอออน(Deionized water, Millipore, Sweden) ในการเตรียมสารละลาย

สารละลายมาตรฐานของตะกั่ว (II) (1000 mg/L) เตรียมโดยละลาย 0.1615 กรัมของตะกั่วไนเตรท ((Merck, Germany) ใน 0.1 M กรดในตริก ปรับปริมาตรจนครบ 100 มิลลิลิตร สารละลายมาตรฐานแคดเมียม (II) (1000 mg /L) เตรียมโดยละลาย 0.1991 กรัม ของแคดเมียมคลอไรด์ (J.T. Baker, Canada) ใน 0.1 M กรดไฮโดรคลอริก ปรับปริมาตรจน ครบ 100 มิลลิลิตร สารละลายมาตรฐานในช่วงที่ใช้งานทำการ เตรียมใหม่ทุกครั้งโดยการเจือจางจากสต็อคของสารละลาย มาตรฐานความเข้มข้น 1000 mg/L ด้วยสารละลายกรดแอซิ ติกเข้มข้นร้อยละ 4 โดยปริมาตรต่อปริมาตร สารละลายอิเลค โตรไลต์ (กรดแอซิติกเข้มข้นร้อยละ 4 โดยปริมาตรต่อปริมาตร) เตรียมโดยใช้กรดอะซิติกเข้มข้น 40 มิลลิลิตรทำการเจือจางใน น้ำปราศจากไอออนและทำการปรับปริมาตรจนครบ 1000 มิลลิลิตร แก๊สไนโตรเจน (99.9995%, TIG, Thailand) ถูกใช้ เพื่อกำจัดออกซิเจนที่ละลายอยู่ในสารละลาย

2.2 เครื่องมือ

ทำการวิเคราะห์ด้วยวิธีดิฟเฟอร์เรนเซียลพัลส์แอโนดิก สทริปปิงโวลแทมเมตรี โดยใช้เครื่อง Metrohm 797 VA Computrace Voltammograph (Metrohm, Switzerland) พร้อมด้วยโวลแทมเมตริกเซลล์ ขั้วหยดปรอทแขวน (HMDE) เป็นขั้วไฟฟ้าทำงาน ขั้วไฟฟ้าช่วยแพททินัม และขั้วอ้างอิง Ag/ AgCI/3M KCI โดยทำการควบคุมการทำงานของเครื่องด้วย คอมพิวเตอร์โดยใช้ VA Computrace software version 1.3 (8.797.8067, 797 VA Computrace, Metrohm)

2.3 ขั้นตอนการสกัด

การสกัดโลหะจากกระเบื้องคอนกรีตมุงหลังคาได้ ดำเนินการตามวิธีมาตรฐาน [1] กระเบื้องคอนกรีตมุงหลังคา ที่จะใช้ทดสอบจะถูกทำความสะอาดให้ปราศจากจากไขมัน และสิ่งสกปรกอื่น ๆ ที่จะส่งผลกระทบต่อผลการทดสอบ ตัวอย่าง กระเบื้องคอนกรีตมุงหลังคาที่ถูกตัดให้มีพื้นที่ผิวประมาณ 5500 mm² จะถูกแช่ลงในภาชนะ ทำการเติมน้ำปราศจากไอออนลง ไป 500 มิลลิลิตร ในภาชนะที่มีฝาครอบแล้วเก็บตัวอย่าง ที่ อุณหภูมิ 23±2°C เป็นเวลา 24±1 ชั่วโมง เมื่อครบเวลาน้ำแผ่น กระเบื้องคอนกรีตมุงหลังคาออกและทำการเทน้ำตัวอย่างทั้งหมด ที่สกัดได้ลงในขวดปริมาตร 500 มิลลิลิตรและเติมกรดไฮโดร คลอริกเข้มข้น 2 มิลลิลิตร จากนั้นทำการปรับปริมาตรจนครบ 500 มิลลิลิตรและเก็บตัวอย่างในขวดพลาสติกเพื่อนำไปวิเคราะห์ หาปริมาณุโลหะที่ละลายออกมาโดยเทคนิคโวลแทม-เมตรีต่อไป

2.4 ขั้นตอนการวิเคราะห์ด้วยเทคนิคโวลแทมเมตรี

น้ำสารละลายตัวอย่างที่สกัดได้ 5 มิลลิลิตรและ สารละลายกรดแอซิติกเข้มข้นร้อยละ 4 โดยปริมาตรต่อปริมาตร 5 มิลลิลิตรเติมลงในโวลแทมเมตริกเซลล์ หลังจากนั้นสารละลาย จะถูกกวนที่อัตราความเร็ว 2000 รอบต่อนาทีพร้อมกับกำจัด ตัวรบกวนด้วยแก๊สไนโตรเจนเป็นเวลา 3 นาที่ ก่อนที่จะทำการ สะสมปริมาณโลหะบนขั้วหยดปรอทแขวน (HMDE) โดยการ ให้ศักย์ไฟฟ้าคงที่-0.9 โวลล์ เทียบกับขั้วอ้างอิง ซิลเวอร์/ซิลเวอร์ คลอไรด์อย่างต่อเนื่องเป็นเวลา 45 วินาทีหลังจากนั้นหยุดกวน สารละลายเป็นเวลา 5 วินาที แล้วทำการสแกนด้วยวิธีดิฟเฟอร์ เรนเชียลพัลส์จากศักย์ไฟฟ้า -0.90 โวลล์ ไปยังศักย์ไฟฟ้า -0.10 โวลล์ โดยใช้ pulse amplitude 50 มิลลิโวลต์ step potential 6 มิลลิโวลต์ ด้วยอัตราในการเกิดพัลส์ 0.0298 โวลต์ต่อวินาที และทำการบันทึกโวลแทมโมแกรม หากระแสพีคสัญญาณ สูงสุดของแคดเมี่ยมและตะกัว และทำการวิเคราะห์หาปริมาณ โดยวิธีเติมสารมาตรฐานโดยการเติมสารละลายมาตรฐานของ แคดเมียมและตะกัวลงไปในสารละลายตัวอย่าง ทำการสะสม ปริมาณโลหะบนขั้วหยดปรอทแขวน ตามขั้นตอนที่ได้อธิบาย ้ไว้ข้างต้น โดยเติมสารละลายมาตรฐานซ้ำจำนวน 4 ครั้ง ความ เข้มข้นของแคดเมียมและตะกัวในตัวอย่างจะถูกประเมินจาก กราฟมาตรฐานโดยการลบค่าความเข้มข้นของแคดเมียมและ ตะกัวในสารละลายแบลงค์ออกก่อน รายงานปริมาณของ แคดเมียมและตะกั่วที่ถูกซะออกมาจากกระเบื้องคอนกรีต มุงหลังคาเป็น ไมโครกรัม / ลิตร

ผลและวิจารณ์ (Results and discussion) มลของพารามิเตอร์บางอย่างเกี่ยวกับการวิเคราะห์ด้วย เทคนิคโวลแทมเมตรี

วิธีดิฟเฟอร์เรนเชียลพัลส์แอโนดิกสทริปปิงโวลแทมเมตรี

เป็นสารที่มีพิษอย่างมาก เพราะฉะนั้นปรอทที่เป็นของเสียหลัง ใช้งานแล้วจะต้องถูกรวบรวมเพื่อการเก็บรักษาที่เหมาะสม

สารละลายกรดแอซิติกถูกน้ำมาใช้เป็นสารอิเล็คโตรไลต์ คล้ายกับที่รายงานในการศึกษาก่อนหน้านี้ [13, 22] โดยที่กรด อะซิติกมี pH ประมาณ 2.3 เพื่อป้องกันการตกตะกอนของโลหะ ไฮดรอกไซด์ในสารุละลาย นอกจากนี้ยังมีในความบริสุทธิ์สูง กว่าเกลืออะซิเตทที่มักจะใช้สำหรับการเตรียมอะซิเตทบัฟเฟอร์ ทำให้มีสัญญาณของสารละลายแบลงค์ต่ำซึ่งเหมาะสำหรับการ หาปริมาณโลหะหนัก ผลของความเข้มข้นของกรดแอซิติกที่ให้ ้สัญญาณสูงสุดที่ความเข้มข้น 8 ไมโครกรัมต่อลิตรของโลหะ แต่ละชนิดที่ใช้ทดสอบ พบว่ากรดอะซิติกที่อยู่ในช่วงความเข้ม ข้นของ 1-6% v / V ไม่ได้ส่งผลกระทบต่อทั้งศักย์ไฟฟ้าและพี่ค สัญญาณสูงสุดของโลหะทุกชนิดที่ศึกษา ดังแสดงในรูป 1 และ 2 แต่ความแม่นย้ำของวิธีทดสอบจะแย่ลง เมื่อใช้ความเข้มข้น ของกรดแอซิติก สูงเกินไปหรือต่ำเกินไป (%RSD 9.25, 5.02, 4.77, 2.93, 8.15, 8.58 ที่ความเข้มข้น 1, 2, 3, 4, 5, 6% v / V กรดอะซิติกตามลำดับ) นอกจากนี้ความเข้มข้นที่สูงขึ้นของกรด ้อะซิติกใช้จะทำให้ปริมาณตะกั่วที่สูงขึ้นในสารละลายแบลงค์ ที่ใช้เป็นสารละลายอิเล็กโทรไลต์ ดังนั้นกรดแอซิติกเข้มข้นร้อยละ 4 โดยปริมาตรต่อปริมาตรจึงถูกเลือกใช้สำหรับการศึกษาต่อไป

อาศัยการเกิดปฏิกิริยารีดักชั่นของไอออนของโลหะที่ขั้วไฟฟ้า ทำงานโดยจะทำการสะสมปริมาณโลหะบนพื้นผิวของขั้วไฟฟ้า ก่อนเป็นระยะเวลาที่แน่นอนค่าหนึ่ง หลังจากนั้นทำการสแกน ศักย์ไฟฟ้าไปทางขั้วบวก ซึ่งโลหะจะเกิดปฏิกิริยาออกซิเดชันที่ ศักย์ไฟฟ้าต่างกันตามลักษณะเฉพาะของไอออนโลหะแต่ละ ชนิด และทำการบันทึกเป็นโวลแทมโมแกรมออกมา ได้ศึกษา สภาวะในขั้นตอนการสะสมปริมาณโลหะบนขั้วไฟฟ้าทำงานใน การทดสอบด้วยแอโนดิกสทริปปิงโวลแทมเมตรี โดยใช้รูปแบบ ศักย์ไฟฟ้าดิฟเฟอร์เรนเซียลพัลส์ในขั้นตอนสทริปปิง ซึ่งทำให้ สแกนได้อย่างรวดเร็วและมีความไวในการวิเคราะห์ที่ดี โดยใช้ pulse amplitude 50 มิลลิโวลต์ step potential 6 มิลลิโวลต์ ด้วยอุ้ตราในการเกิดพัลส์ 0.0298 โวลต์ต่อวินาที

ขั้วหยดปรอทแขวน (HMDE) ถูกใช้เป็นขั้วไฟฟ้าทำงาน เพราะมันเป็นขั้วไฟฟ้าที่หาง่ายและสะดวกในการใช้ในการ วิเคราะห์สำหรับงานประจำ ขั้วปรอทมีข้อดีหลายอย่าง เช่น มัน มีศักย์ไฟฟ้าใช้งานทางลบที่กว้างเหมาะสำหรับนำมาใช้วิเคราะห์ หาปริมาณตะกั่ว และ แคดเมียม พื้นผิวขั้วไฟฟ้าจะถูกเปลี่ยน ใหม่ทุกครั้ง ทำให้สะอาดมาก และโลหะปรอทของเหลวสามารถ ละลายตะกั่วและแคดเมียมได้เป็นอย่างดี อยู่ในรูปโลหะอะมัลกัม ในขั้นตอนเพิ่มความเข้มข้น สิ่งเหล่านี้ทำให้มีความไวสำหรับ การวิเคราะห์ที่ดีและผลการวิเคราะห์ซ้ำที่ดีด้วย ถึงแม้ว่าปริมาณ สารปรอทที่น้อยมากจะถูกนำมาใช้ในการวิเคราะห์ แต่ปรอท

รูปที่ 1 ผลของความเข้มข้นของกรดแอซิติกที่ใช้ปีนสารละลายอิเล็กโทรไลต์ สำหรับวิเคราะห์หาปริมาณแคดเมียม สภาวะที่ใช้ : deposition potential -0.90 V, deposition time 45 s, stirring rate 2000 rpm, differential pulse waveform with pulse amplitude of 50 mV, step potential of 6 mV, Voltage step time 0.2 s and sweep rate 0.0298 V/s, potential scan range -0.90 to -0.10 V.

รูปที่ 2 ผลของความเข้มข้นของกรดแอซิติกที่ใช้ปืนสารละลายอิเล็กโทรไลต์ สำหรับการวิเคราะห์หาปริมาณตะกั่ว สภาวะที่ใช้: deposition potential -0.90 V, deposition time 45 s, stirring rate 2000 rpm, differential pulse waveform with pulse amplitude of 50 mV, step potential of 6 mV, Voltage step time 0.2 s and sweep rate 0.0298 V/s, potential scan range -0.90 to -0.10 V.

ได้ศึกษาผลของศักย์ไฟฟ้าคงที่ ที่ใช้ในการสะสมปริมาณโลหะบนขั้วไฟฟ้าทำงาน ที่ใช้ในการทดสอบในช่วง-0.90 ถึง 1.30 V โดยการเติมสารละลายมาตรฐานของแคดเมียมและตะกั่วลงไปในสารละลายอิเล็กโทรไลต์และตรวจวัดหาปริมาณโลหะทั้ง สองชนิด พบว่าที่ศักย์ไฟฟ้าที่เป็นลบมากขึ้นจะให้ความไวสำหรับการวิเคราะห์ได้สูงขึ้น อย่างไรก็ตาม ศักย์ไฟฟ้าคงที่ ที่ใช้ในการ สะสมปริมาณโลหะบนขั้วไฟฟ้าทำงาน ที่ -0.90 V ได้ถูกเลือกนำมาใช้ต่อไป เพราะศักย์ไฟฟ้าที่เป็นลบมากเกินไปอาจจะนำไปสู การรบกวนในขั้นตอนการสะสมปริมาณตะกั่ว หรือกูารเกิดก๊าซไอโดรเจนที่ขั้วไฟฟ้าทำงานที่สภาวะเป็นกรดสูง

ได้ศึกษาเวลาที่ใช้ในการสะสมปริมาณโลหะที่ขั้วไฟฟ้าทำงาน โดยใช้ความเข้มข้น 8 ไมโครกรัมต่อลิตร ข[้]องแต่ละโลหะ ทำ การพล็อตสัญญานพีคสูงสุดเมื่อเทียบกับระยะเวลาที่ใช้ในการการสะสมปริมาณโลหะแสดงดังรูปที่ 3 พบว่าระยะเวลาที่ใช้ใน การการสะสมปริมาณโลหะที่ให้ความสัมพันธ์เป็นเส้นตรงตามสัดส่วนเวลาที่ใช้ในการสะสมปริมาณโลหะไปจนถึง ที่เวลา 3 นาที ส่วนในช่วงเวลาการสะสมที่นานกว่า 3 นาที โลหะที่ถูกสะสมบนขั้วไฟฟ้าทำงาน (HDME) จะอิ่มตัวบนพื้นที่ผิวของขั้ว จึงไม่มีการ เพิ่มขึ้นอีกของพีคสัญญาณที่ได้

รูปที่ 3 ผลของเวลาที่ใช้ในการสะสมปริมาณโลหะบนขั้วไฟฟ้าทำงาน สภาวะที่ใช้ : deposition potential -0.90 V, stirring rate 2000 rpm, differential pulse waveform with pulse amplitude of 50 mV, step potential of 6 mV, Voltage step time 0.2 s and sweep rate 0.0298 V/s., potential scan range -0.90 to -0.10 V.

3.2 คุณลักษณะทางเคมีวิเคราะห์

ภ[^]ายใต้สภาวะที่เลือกสำหรับการวิเคราะห์ : ใช้กรดแอซิติกเข้มข้นร้อยละ 4 โดยปริมาตรต่อปริมาตรเป็นสารละลายอิเล็กโทร ไลต์, ศักย์ไฟฟ้าคงที่-0.9 โวลล์ ในการสะสมปริมาณโลหะที่ขั้วไฟฟ้าทำงาน, เวลาที่ใช้ในการสะสมโลหะ 45 วินาที, pulse amplitude 50 มิลลิโวลต์ step potential 6 มิลลิโวลต์ ด้วยอัตราในการเกิดพัลส์ 0.0298 โวลต์ต่อวินาที ได้โวลแทมโมแกรม ดังแสดงในรูปที่ 4 สามารถให้กราฟมาตรฐานที่เป็นเส้นตรงในช่วงความเข้มข้น 0-20 ไมโครกรัมต่อลิตรของแต่ละโลหะ โดยมี สมการเส้นตรง ของแคดเมียม (Cd: Y = 1.5696X + 0.282, r² = 0.9996) และ ตะกั่ว (Pb: Y = 0.9304X + 1.566, r² = 0.9996) โดยที่ Y คือ ค่าความสูงของพีค มีหน่วยเป็น ไมโครแอมป์ (µA) และ X คือ ความเข้มข้น มีหน่วยเป็น ไมโครกรัมต่อลิตร (µg L⁻¹) โดยที่ขีดจำกัดต่ำสุดในการตรวจวัด (3SD blank/slope) [23] เท่ากับ 0.15 ไมโครกรัมต่อลิตรของทั้งแคดเมียมและตะกั่ว โดยที่ขีดจำกัดต่ำสุดในการตรวจวัด และความไวในการตรวจวัดอาจจะดีขึ้นอีกโดยใช้เวลาในการสะสมปริมาณโลหะที่ขั้วไฟฟ้า ทำงานต่อไปอีกตามที่อธิบายไว้ในข้อ 3.1 อย่างไรก็ตามในงานวิจัยนี้ความเป็นเส้นตรงและขีดจำกัดต่ำสุดในการตรวจวัดที่ได้มี ความเหมาะสมสำหรับการประยุกต์ใช้ในการวิเคราะห์เพื่อใช้ในการควบคุมคุณภาพของกระเบื้องคอนกรีตมุงหลังคาแล้ว ค่าเบี่ยงเบนมาตรฐานส้มพัทธ์ที่ความเข้มข้น 8 ไมโครกรัมต่อลิตรของโลหะแคดเมียมและตะกั้ว จำนวน 11 ซ้ำ อยู่ในช่วง 1.59-1.74% ค่าการคืนกลับของการวิเคราะห์ (Recovery) เท่ากับ 107% สำหรับการเติมโลหะทั้งสองลงไปในสารตัวอย่างโดยใช้วิธีการวิเคราะห์ หาปริมาณแบบเติมสารมาตรฐาน (Standard addition) สำหรับการวิเคราะห์โลหะทั้ง 2 ชนิดพร้อม ๆ กันซึ่งจะเร็วกว่าวิธีมาตรฐาน ที่ใช้เทคนิคอะตอมมิกแอบซอร์พขันสเปกโทรโฟโตเมตรี [1]

รูปที่ 4 โวลแทมโมแกรมของแคดเมียมและตะกั่วในสารละลายอิเล็กโทรไลต์กรดแอซิติกเข้มข้นร้อยละ 4 โดยปริมาตรต่อปริมาตร สภาวะที่ใช้ : deposition potential -0.90 V, deposition time 45 s, stirring rate 2000 rpm, differential pulse waveform with pulse amplitude of 50 mV, step potential of 6 mV, Voltage step time 0.2 s and sweep rate 0.0298 V/s, potential scan range -0.90 to -0.10 V.

3.3 การประยุกต์ใช้ในตัวอย่างจริง

้วิธีที่พัฒนาขึ้นนี้สามารถนำไปประยุกต์ใช้ในการวิเคราะห์ หาปริมาณแคดเมียมและตะกั่วที่สกัดจากพื้นผิวของกระเบื้อง คอนกรีตมุงหลังคา วิธีการวิเคราะห์แบบเติมสารมาตรฐาน (Standard addition) มักจะใช้ลดความคลาดเคลื่อนของผล การวิเคราะห์ที่เกิดจากสารรบกวนที่เป็นส่วนประกอบในตัวอย่าง ้อย่างไรก็ตามในที่นี้พบว่าผลการวิเคราะห์จากวิธีเติมสาร มาตรฐานและวิธีกราฟมาตรฐานมีความสอดคล้องกันดีสำหรับ Pb, Y = 0.9304X + 1.566, r² = 0.9996 ซึ่งแสดงให้เห็นว่า ไม่มีการรบกวนในการวิเคราะห์ในตัวอย่างด้วยวิธีที่ถูกนำเสนอ ้นี้ ผลการวิเคราะห์หาปริมาณแคดเมียมและตะกั่ว ได้สรุปไว้ ในตารางที่ 2 จากการวิเคราะห์ตัวอย่างพบว่าปริมาณแคดเมียม และตะกั่ว ที่ถูกซะออกมาจากตัวอย่างกระเบื้องคอนกรีต มุงหลังคาอยู่ในช่วง <0.15-0.55 ไมโครกรัมต่อลิตร และ <0.15-11.95 ไมโครกรัมต่อลิตร ตามลำดับ ซึ่งต่ำกว่าที่เกณฑ์มาตรฐาน ผลิตภัณฑ์อุตสาหกรรมของไทยกำหนดไว้ (มอก. 535-2556) ซึ่งกำหนดไว้ในระดับสูงสุดที่ 10 และ 50 ไมโครกรัมต่อลิตร ้สำหรับแคดเมียมและตะกัวตามลำดับ วิธีการที่พัฒนาขึ้นนี้ไม่ ยุ่งยาก สะดวกและมีความไวในการวิเคราะห์สูง และสามารถ น้ำไปใช้เป็นวิธีทางเลือกกับวิธีมาตรฐานสำหรับการวิเคราะห์ หาปริมาณแคดเมียมและตะกั่ว ในตั้วอย่างกระเบื้องคอนกรีต มุงหลังคาได้

ตารางที่ 2 ปริมาณแคดเมียมและตะกั่วในกระเบื้องคอนกรีต มุงหลังคาโดยวิธีดิฟเฟอร์เรนเซียลพัลส์แอโนดิกสทริปปิงโวล แทมเมตรี

ตัวอย่าง	ปริมาณโลหะที่ถูกซะออกมา (µg/L)*		
	แคดเมียม	ตะกั่ว	
1	0.34 ± 0.03	9.84 ± 0.04	
2	0.34 ± 0.02	4.03 ± 0.03	
3	0.16 ± 0.03	2.61 ± 0.03	
4	N.D.	1.30 ± 0.02	
5	N.D.	N.D.	
6	0.45 ± 0.04	8.25 ± 0.05	
7	N.D.	0.20 ± 0.02	
8	N.D.	0.68 ± 0.03	
9	N.D.	N.D.	
10	N.D.	0.40 ± 0.03	

ตัวอย่าง	ปริมาณโลห:	าณโลหะที่ถูกซะออกมา (µg/L)*		
	แคดเมียม	ตะกั่ว		
11	N.D.	0.20 ± 0.02		
12	0.34 ± 0.03	9.07 ± 0.06		
13	0.32 ± 0.02	3.26 ± 0.03		
14	0.16 ± 0.02	1.84 ± 0.02		
15	N.D.	0.53 ± 0.02		
16	N.D.	N.D.		
17	N.D.	0.30 ± 0.03		
18	N.D.	0.86 ± 0.02		
19	N.D.	0.40 ± 0.03		
20	N.D.	0.38 ± 0.04		
21	N.D.	2.78 ± 0.05		
22	N.D.	2.89 ± 0.03		
23	N.D.	0.67 ± 0.02		
24	N.D.	0.47 ± 0.04		
25	N.D.	0.21 ± 0.03		
26	N.D.	2.24 ± 0.05		
27	N.D.	1.76 ± 0.04		
28	N.D.	1.62 ± 0.03		
29	N.D.	2.21 ± 0.06		
30	N.D.	2.05 ± 0.03		
31	N.D.	0.63 ± 0.03		
32	N.D.	N.D.		
33	0.49 ± 0.03	11.95 ± 0.05		
34	0.19 ± 0.03	0.43 ± 0.03		
35	N.D.	0.98 ± 0.05		
36	N.D.	0.31 ± 0.02		
37	N.D.	1.94 ± 0.03		
38	0.55 ± 0.07	2.41 ± 0.06		
39	N.D.	0.63 ± 0.04		
40	N.D.	0.57 ± 0.05		

mean of triplicated results, N.D. = not detected

4. สรุป (Conclusion)

วิธีแอโนดิกสทริปปิงโวลแทมเมตรีสำหรับการวิเคราะห์หา ปริมาณแคดเมียมและตะกั่วในน้ำที่ถูกซะออกมาจากตัวอย่าง กระเบื้องคอนกรีตมุงหลังคาได้ถูกพัฒนาขึ้น สารที่ถูกสกัดออก มาสามารถวิเคราะห์ได้โดยตรงหลังจากการเติมสารละลาย อิเล็กโทรไลต์ กรดแอซิติกเข้มข้นร้อยละ 4 โดยปริมาตรต่อ ปริมาตรวิธีนี้มีความไวสูงมากเป็นผลมาจากการเพิ่มความเข้ม ข้นของโลหะบนขั้วไฟฟ้าทำงานวิธีการที่พัฒนาขึ้นนี้ ง่าย รวดเร็ว มีความไวสูง และมีความจำเพาะ และสามารถวิเคราะห์หา ปริมาณโลหะสองชนิดได้พร้อมกัน มีความแม่นยำและความ ถูกต้องสูง โดยสามารถใช้วิธีการวิเคราะห์เชิงปริมาณโดยการ เติมสารมาตรฐาน หรือใช้วิธีการวิเคราะห์เชิงปริมาณโดยการ เติมสารมาตรฐาน หรือใช้วิธีกราฟมาตรฐานก็ได้ ซึ่งสามารถ นำวิธีที่พัฒนาขึ้นนี้ไปใช้วิเคราะห์หาปริมาณแคดเมียมและ ตะกั่วในตัวอย่างกระเบื้องคอนกรีตมุงหลังคา สำหรับการควบคุม คุณภาพผลิตภัณฑ์อุตสาหกรรม และสามารถนำไปใช้เป็นวิธี ทางเลือกกับวิธีมาตรฐาน (มอก 535-2556) ได้

5. กิตติกรรมประกาศ (Acknowledgement)

ผู้เขียนขอขอบคุณ กลุ่มวัสดุก่อสร้าง กองวัสดุวิศวกรรม กรมวิทยาศาสตร์บริการ ที่ให้การสนับสนุนสารเคมี และ เครื่องมือ ในงานวิจัยนี้

6. เอกสารอ้างอิง (References)

[1] THAILAND INDUSTRIAL STANDARD. TIS.535-2556. *Test method for concrete roofing tiles.*

[2] BAKIRCIOGLU, Y., S.R. SEGADE, E.R. YOURD and J.F. TYSON. Evaluation of Pb-Spec® for flow-injection solid-phase extraction preconcentration for the determination of trace lead in water and wine by flame atomic absorption spectrometry. *Anal. Chim. Acta.* 2003, 485, 9-18.

[3] SUNG, H.Y. and S.D. HUANG. On-line preconcentration system coupled to electrothermal atomic absorption spectrometry for the simultaneous determination of bismuth, cadmium, and lead in urine. *Anal. Chim. Acta.* 2003, 495, 165-176.

[4] FILIZ SENKAL, B., M. INCE, E. YAVUZ and M. YAMAN. The synthesis of new polymeric sorbent and its application in preconcentration of cadmium and lead in water samples. *Talanta*. 2007, 72, 962-967.

[5] AMPAN, P., J. RUZICKA, R. ATALLAH, G.D. CHRISTIAN, J. JAKMUNEE and K. GRUDPAN. Exploiting sequential injection analysis with bead injection and labon-valve for determination of lead using electrothermal atomic absorption spectrometry. *Anal. Chim.* Acta, 2003, 499, 167-172. [6] JAKMUNEE, J., S. SUTEERAPATARANON, Y. VANEESORN and K. GRUDPAN. Determination of Cadmium, Copper, Lead and Zinc by Flow Voltammetric Analysis. *Anal. Sci.* 2001, 17, i399-i401.

[7] JAKMUNEE, J., L. PATIMAPORNLERT, S. SUTEERAPATARANON, N. LENGHOR and K. GRUDPAN. Sequential injection with lab-at-valve (LAV) approach for potentiometric determination of chloride. *Talanta.* 2005, 65, 789-793.

[8] SHERIGARA, B.S., Y. SHIVARAJ, R.J. MASCARENHAS and A.K. SATPATI. Simultaneous determination of lead, copper and cadmium onto mercury film supported on wax impregnated carbon paste electrode: Assessment of quantification procedures by anodic stripping voltammetry. *Electrochim. Acta.* 2007, 52, 3137-3142.

[9] HOCEVAR, S.B., I. SVANCARA, K. VYTRAS and B. OGOREVC. Novel electrode for electrochemical stripping analysis based on carbon paste modified with bismuth powder. *Electrochim. Acta*, 2005, 51, 706-710.

[10] HWANG, G. H., W.K. HAN, J.S. PARK and S.G. KANG. Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. *Talanta*. 2008, 76, 301-308.

[11] CAO, L., J. JIA and Z. WANG. Sensitive determination of Cd and Pb by differential pulse stripping voltammetry with in situ bismuth-modified zeolite doped carbon paste electrodes. *Electrochimica Acta.* 2008. 53, 2177-2182.

[12] ECONOMOU, A. Bismuth-film electrodes: recent developments and potentialities for electroanalysis. *Trends Anal. Chem.* 2005, 24, 334-340.

[13] JAKMUNEE, J. and J. JUNSOMBOON. Determination of cadmium, lead, copper and zinc in the acetic acid extract of glazed ceramic surfaces by anodic stripping voltammetric method. *Talanta*. 2008, 77, 172-175.

[14] SIRIANGKHAWUT, W., S. PENCHAREE, K. GRUDPAN and J. JAKMUNEE. Sequential injection monosegmented flow voltammetric determination of cadmium and lead using a bismuth film working electrode. *Talanta*. 2009, 79, 1118-1124.

[15] HWANG, G.H., W.K. HAN, S.J. HONG, J.S. PARK and S.G. KANG. Determination of trace amounts of lead and cadmium using a bismuth/glassy carbon composite electrode. Talanta. 2009, 77, 1432-1436.

[16] LI, D., J. JIA and J. WANG. Simultaneous determination of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry based on graphite nanofibers– Nafion composite modified bismuth film electrode. *Talanta*. 2010, 83, 332-336.

[17] ARMSTRONG, K.C., C.E. TATUM, R.N. DANSBY-SPARKS, J.Q. CHAMBERS and Z.L XUE. Individual and simultaneous determination of lead, cadmium, and zinc by anodic stripping voltammetry at a bismuth bulk electrode. *Talanta*. 2010, 82, 675-680.

[18] NINWONG, B., S. CHUANUWATANAKUL, O. CHAILAPAKUL, W. DUNGCHAI and S. OTOMIZU. Online preconcentration and determination of lead and cadmium by sequential injection/anodic stripping voltammetry. *Talanta*. 2012, 96, 75-81.

[19] AFKHAMI, A., H. GHAEDI, T. MADRAKIAN and M. REZAEIVALA. Highly sensitive simultaneous electrochemical determination of trace amounts of Pb(II) and Cd(II) using a carbon paste electrode modified with multi-walled carbon nanotubes and a newly synthesized Schiff base. *Electrochim. Acta.* 2013, 89, 377-386.

[20] KEAWKIM, K., S. CHUANUWATANAKUL, O. CHAILAPAKUL and S. MOTOMIZU. Determination of lead and cadmium in rice samples by sequential injection/ anodic stripping voltammetry using a bismuth film/crown ether/Nafion modified screen-printed carbon electrode. *Food Control.* 2013, 31, 14-21.

[21] BI, Z., P. SALAÜN and C. M.G. VAN DEN BERG. Determination of lead and cadmium in seawater using a vibrating silver amalgam microwire electrode. *Anal. Chim. Acta*. 2013, 769, 56-64.

[22] JUNSOMBOON, J. and J. JAKMUNEE. Determination of Cadmium and Lead in Concrete Roofing Tiles by Differential Pulse Anodic Stripping Voltammetric Method. *Chiang Mai J. Sci.* 2016, 43, 1122-1131.

[23] CHRISTIAN G. D. Analytical Chemistry. 6th ed., New York : Wiley, 2004.