Contents

	Preface	VII
Pa	ort One How Things Move	
1.	The solar system SATELLITES OF THE SUN 3 RECORDING OUR OBSERVATIONS 5	3
2.	The search for order ASTRONOMICAL MEASUREMENTS IN ANTIQUITY 19 THE PTOLEMAIC UNIVERSE 25 COPERNICUS CHANGES THE MODEL 29 THE POST-COPERNICAN ASTRONOMERS-A TRANSITION 37	19
3.	Motion without bodies—kinematics EARLY IDEAS ABOUT MOTION 48 GALILEO'S IDEALIZATION OF MOTION 52 AVERAGE VELOCITY 53 CHANGING VELOCITY—ACCELERATION 56 VECTOR CONCEPTS 62 FALLING BODIES—A SPECIAL CASE OF UNIFORM ACCELERATION 65 PROJECTILE MOTION 68 FRAME OF REFERENCE 71	48
4.	Bodies in motion—dynamics BASIC CONCEPTS—LAWS OF MOTION 74 UNITS OF MEASUREMENT 76 MOTION IN A CIRCLE 81 GRAVITATION—THE DYNAMICS OF ASTRONOMY 84 CONSERVATION PRINCIPLES—MOMENTUM AND ENERGY 93	74
		IX

Contents

۲

Part Two How Matter Behaves

5.	Extension of mechanical concepts	107
	THE CONCEPT OF TEMPERATURE 107	
	THE CONCEPT OF PRESSURE 109	
	HEAT AS A FORM OF ENERGY 114 THE CONCEPT OF AN IDEAL GAS 121	
	THE KINETIC MODEL OF A GAS 127	
6.	Electricity—nonmechanical energy	136
	QUALITATIVE BEHAVIOR 136	
	QUANTITATIVE BEHAVIOR 141	
	ELECTROMAGNETIC PHENOMENA 150	
7.	Light and electrons	156
	VELOCITY OF LIGHT 156	
	WAVE NATURE OF LIGHT 158	
	SPECTRA 165	
	ELECTROMAGNETIC NATURE OF LIGHT WAVES 167 CATHODE RAYS AND X RAYS 170	
	NATURE OF THE ELECTRON–A PARTICLE OF ELECTRICITY 172	
	LIGHT AS A PARTICLE 180	
8.	Atomic structure	189
	NUCLEAR ATOM 189	
	ELECTRONIC STRUCTURE AND ATOMIC SPECTRA 191	
	NATURAL RADIOACTIVITY 197	
	THE NATURE OF NUCLEAR CHANGE 204 ARTIFICIAL NUCLEAR CHANGE AND NUCLEAR ENERGY 213	
	ARTIFICIAL NOCLEAR CHANGE AND NOCLEAR ENERGY 215	
Pa	rt Three The Atomic Nature of Matter	
9.	The philosophic background of atomism	227
10.	The nature of chemistry	230
	A DEFINITION OF CHEMISTRY 230	
	CHEMICAL CHANGE 231	
	THE IDEA OF COMPOSITION-ELEMENTS 232	
	COMPOUNDS AND THE LAW OF CONSTANT COMPOSITION 233	

11.	The atomic theory of John Dalton	236
	THE ASSUMPTIONS OF DALTON'S THEORY236APPLICATION OF THE ATOMIC THEORYTO CHEMICAL COMPOSITION237CHEMICAL SYMBOLS238	
	THE CONCEPT OF THE GRAM MOLECULAR WEIGHT 241	
12.	The atomic theory after Dalton	245
	THE PROBLEM OF ATOMIC WEIGHTS 245 GAY-LUSSAC'S LAW OF COMBINING VOLUMES 246 AVOGADRO'S HYPOTHESIS 246 CANIZZARO AND A NEW DEFINITION 247 A NEW DEFINITION OF ATOMIC WEIGHT 249	
13.	Classification of the elements	252
	PROUT'S HYPOTHESIS 252 DOEBEREINER'S TRIADS 253 THE PERODIC LAW 253 USES OF THE PERIODIC TABLE 255 THE DISCOVERY OF THE INERT GASES 256 SOME FAMILY PROPERTIES 258	
14.	The structure of the atom	262
	EVIDENCE FOR THE ELECTRICAL NATURE OF THE ATOM 262 ELECTRON SHELLS 265 IONIC VALENCE 269 IONIZATION POTENTIALS 270 COVALENT BONDING 274	
15.	Chemical bonding and the solid state	278
	THE NATURE OF IONIC SOLIDS 278 VAN DER WAALS SOLIDS 280 POLAR COVALENT BONDS 281 POLAR MOLECULES 282 IONIC OR COVALENT? 285 COVALENT CRYSTALS 286 SILICATE STRUCTURES 287	
16.	Solutions	291
	SOLUTIONS OF IONIC SOLIDS 291 POLAR MOLECULES IN POLAR SOLVENTS 293 OIL AND WATER 293	

XI

17. Acids and bases

ACIDS-PROPERTIES AND CONCEPTS 295 ALKALIES 297 SALTS 298 NEW DEFINITIONS FOR OLD 299 WEAK ACIDS 300 WEAK ACIDS AND EQUILIBRIUM 301 BRONSTED CONCEPTS AND NONAQUEOUS SOLVENTS 302

18. Oxidation-reduction

OXYGEN AND OXIDATION 305[°] AN ELECTRICAL VIEW OF OXIDATION-REDUCTION 306 ELECTRICAL OXIDATION-REDUCTION 307 OXIDATION POTENTIALS 308 FUEL CELLS 311

19. Organic chemistry

THE NATURE OF THE CARBON CHAIN-HYDROCARBONS 314 STRUCTURAL ISOMERISM 315 PROPERTIES OF METHANE HYDROCARBONS 316 UNSATURATED HYDROCARBONS 317 ADDITION POLYMERS 318 FUNCTIONAL GROUPS 319 CONDENSATION POLYMERS 322

Part Four The Earth – A Fragment of the Cosmos

20. Geologic perspective

EXPERIMENTS IN GEOLOGY 327 ANTIQUITY OF THE EARTH AND GEOLOGIC TIME 328 PRINCIPLE OF UNIFORMITARIANISM 331 THEORETICAL WORLD OF HISTORICAL GEOLOGY 333 CONTINENTAL GLACIATION—TRIUMPH BY GEOLOGIC METHOD 333

21. Minerals-the components of the earth

CHEMICALS WITHIN THE EARTH 339 CLASSIFICATION OF MINERALS 341 CRYSTAL STRUCTURE OF MINERALS 342 POLYMERS IN MINERAL CRYSTALS 346 ATOMIC SUBSTITUTION 347

305

314

327

339

MINERAL PROPERTIES DETERMINED BY CRYSTAL STRUCTURE 349 FORMATION OF CRYSTALS 350

۴.

22.	Origin and classification of rocks	353
	SÉDIMENTARY ROCKS 353 IGNEOUS ROCKS 361 METAMORPHIC ROCKS 371 THE ROCK CYCLE 377	
23.	Interior of the earth	380
	DIRECT KNOWLEDGE IS LIMITED 380 INFORMATION FROM GRAVITY 380 EVIDENCE FROM EARTHQUAKES 381 BEHAVIOR OF EARTHQUAKE WAVES 383 LAYERS OF DIFFERENT SEISMIC BEHAVIOR 387 TEMPERATURES WITHIN THE EARTH 388 MAGNETIC FIELD OF THE EARTH 389 THEORETICAL MODEL OF THE INTERIOR OF THE EARTH 391 IS THE MODEL VALID? 393	
24.	Weathering	396
	PHYSICAL WEATHERING 397 CHEMICAL WEATHERING 399 WEATHERING OF COMMON ELEMENTS 402 WEATHERING OF SEDIMENTS 403 ECONOMIC SIGNIFICANCE OF WEATHERING 404	
25.	Erosion	406
	MASS WASTAGE 406 GROUND WATER 409 EROSION BY GROUND WATER 410 DEPOSITION BY GROUND WATER 412 KARST 415 WATER SUPPLY 418 STREAMS 420 EROSION BY STREAMS 424 DEPOSITION BY STREAMS 426 GLACIERS 427 MOUNTAIN GLACIATION 428 CONTINENTAL GLACIATION 432 WAVES AND TURBIDITY CURRENTS 435	

EROSION BY WIND 440 DEPOSITION BY WIND 441

WIND 438

XIV

26. Dynamic processes within the earth

ROCK DEFORMATION 446 RECOGNITION OF DEFORMATION 446 DEFORMATION OF BRITTLE ROCKS 449 DEFORMATION OF PLASTIC ROCKS 452 UNCONFORMITIES 454 ECONOMIC SIGNIFICANCE OF DEFORMATION 456 **ISOSTATIC ADJUSTMENT** 456 MOUNTAIN SYSTEMS 462 CAUSES OF GEOSYNCLINES AND OROGENY 464

27. Principles of earth history

ALL HISTORY IS A MODEL 470 THE GEOLOGIC TIME SCALE 471 DEVELOPMENT OF THE TIME SCALE 471 ESTABLISHING RELATIVE DATES 476 DETERMINING DATES IN YEARS 480

28. Examples of earth history

THE GRAND CANYON 487 CROSS SECTION FROM ST. LOUIS TO THE ATLANTIC OCEAN 489 EVOLUTION OF THE VERTEBRATES 494

Part Five Cosmic Perspectives

29.	Historical interlude		499
	PROPER MOTION OF THE STARS 500 ABERRATION OF LIGHT 500 ADDITIONAL RESULTS OF IMPROVED OBSER THE DISCOVERY OF STELLAR PARALLAX RADIAL VELOCITY 505	RVATIONS 501 503	
30.	Measuring the universe		507
	DIMENSIONS OF THE SOLAR SYSTEM 507 DETERMINING THE ASTRONOMICAL UNIT DISTANCES TO THE STARS 509 STELLAR PARALLAX 510 APPARENT MAGNITUDE 511 ABSOLUTE MAGNITUDE 512 DISTANCES FROM ABSOLUTE MAGNITUDES	509 513	

470

487

Contents

516

31.

The sun and other stars

A LOOK AT THE SUN 516 TOOLS FOR STUDYING THE STARS 518 SOLAR ENERGY 520 THE PLANETARY SYSTEM 522 TIDAL THEORIES 523 CLASSIFICATION OF THE STARS 527 THE H-R DIAGRAM 529 RED GIANTS AND WHITE DWARFS 532 NOVAS AND SUPERNOVAS 532

32. The M	Nilky Way and beyond	536
ROTAT	TRUCTURE OF THE MILKY WAY 537 TON OF THE MILKY WAY 541	
	BIG IS THE SKY? 541 XPANDING UNIVERSE 545	
THEOF	RIES OF THE UNIVERSE 547	
Appendix 1	Table of Physical Constants	553
Appendix 2	Numerical Equivalents	553
Glossary		557
Index		571