510 GOO

CONTENTS

1. Mathematical Symbols	
1. A five-minute history of mathematical symbols	14
2. Subscripts	16
3. One symbol with several meanings	16
4. What is a theorem?	18
5. The notation Q.E.D.	19
★6. Function notation	19
7. The "three dots" notation	20
$\bigstar 8$. The absolute value notation	22
2. Mathematical Induction	
1. An example	24
2. Some counter-examples	24
3. The general principle	27
4. Further examples	28
5. The factorial notation	32
6. The Pascal triangle	33
★ 7. The binomial coefficients	36
3. Magic Squares	
1. The simplest magic square	40
2. Panmagic squares	45
3. A general formula for magic squares	47
4. Magic cubes	50
5. An old letter	53
6. More and deeper	56

6 A Contents

4.	Inequalities	
	1. Introduction	58
	2. The elementary theorems	58
	★3. Some more complicated inequalities	65
	★4. The arithmetic and geometric means	67
	, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•
5.	Mathematical Induction in Geometry	
	1. Some simple examples	7 2
	2. Polygons	76
	3. Geographical maps and Euler's Theorem	79
	4. A closer look at Euler's Theorem	84
	5. An application of Euler's Theorem	86
	• •	
6.	The Four-Color Problem	
	1. Unsolved problems	90
	2. Statement of the problem	91
	3. A brief history of the problem	93
	★4. A simplification of the problem	- 94
	★5. The five color theorem	96
	★6. On the torus	98
_	m a care	
7.	The Conic Sections	- 00
	1. The right circular cone	102
	2. The conic sections as sections of a cone	105
	3. The conic sections as plane curves	106
	4. The ellipse	110
	5. The hyperbola	112
	6. The parabola	113
o	Estano Value With at II-ia Calculus	
8.	Extreme Values Without Using Calculus	110
	1. A taste of analytic geometry	116
	2. What Calculus can do	121
	3. The maximum value of a function	122
	4. The minimum value of a function	124
	★5. The relative maximum and relative minimum	
	6. Some simple applications	128
	★7. More complicated examples	133
0	Geometric Extremes	
ð.		138
	1. Two simple examples	
	2. The spider and the fly	144

	Contents	/	7
3. More about the conic sections			146
★4. The isoperimetric problem			153
★5. A criticism			157
10. The Theory of Numbers			
1. Introduction			160
2. Definitions			161
3. How many primes are there?			164
4. Twin primes			165
5. Some unsolved problems			167
6. The greatest common divisor			168
★7. Pythagorean triple			171
★8. Fermat's last theorem			175
11. Permutations and Combinations			
1. Two examples	•		177
2. A fundamental principle			179
3. Permutations			181
4. Combinations			183
5. More difficult problems			185
12. Mathematical Intuition			189
Answers to Problems			206
Bibliography			219
Index			2 21