CONTENTS

1	INTI	RODUCTION	1
	1-1	Optimization in Perspective	1
	1-2	The Concepts of System and State	3
	1-3	Performance Measures	5
	1-4	Constraints	7
	1-5	Optimization Problems	8
	1-6	Conditions for Optimality	18
	1-7	Approaches to Solution	19
	1-8	Forms of Solutions	22
	1-9	Sensitivity and Identification	24
	1-10	Discussion	26
2	CLA	SSICAL THEORY OF MINIMA AND MAXIMA	29
	2-1	Introduction	29
	2-2	Basic Concepts and Notation	30
		Functions of One Variable	31
	2-4	Functions of Several Variables	35
	2-5	Equality Constraints and a Lagrange Multiplier	36
	2-6	General Case of Equality Constraints	42
	2-7	Inequality Constraints	43
	2-8	Extremization of Integrals	45
	2-9	Sensitivity Analysis	47
	2-10) Conclusion	51
3	CLA	ASSICAL CALCULUS OF VARIATIONS	62
	3-1	Introduction	62
	3-2	Preliminary Concepts	64
		-	

CONTENTS

		a. Continuity, Extrema, and Variations	64
		b. Classes of Problems and Equivalence Relations	66
	3-3	The Problem of Lagrange: Scalar Case	68
		a. Problem Statement and the First Variation	68
		b. Fundamental Lemma	70
		c. First Necessary Condition and First-Variational Curves	71
		d. A Corner Condition	72
		e. The Euler-Lagrange Equation	73
	3-4	Isoperimetric Constraints	75
	3-5	Variable End-Point Conditions	82
	3-6	Corner Conditions	87
	3-7	The Problem of Lagrange: State-Vector Case	90
	3-8	Constraints	91
		a. Isoperimetric Constraints	91
		b. Constraints of the Form $g_i(\mathbf{x}, \dot{\mathbf{x}}, t) = 0$	92
		c. Constraints of the Form $z_i(\mathbf{x},t) = 0$	94
		d. Inequality Constraints	95
	3-9	A General Control Problem	100
	3-10	Sufficient Conditions and Additional Necessary Conditions	104
		a. Discussion	104
		b. The Second Variation and the Legendre Condition	105
		c. Fields of Solutions	107
		d. The Jacobi Condition	109
		e. Sufficient Condition for Weak Extrema	112
		f. Green's Theorem	114
	~	g. The Weierstrass Condition and Strong Extrema	115
	3-11	Direct Methods	118
		a. Discussion	118
		b. Series Approximations	119
	2 4 2	c. Finite Differences	121 123
		2 Sensitivity Considerations	123
	3-13	Conclusion	124
4	WIE	NER-HOPF SPECTRUM FACTORIZATION AND	
•		QUENCY-DOMAIN OPTIMIZATION	135
	4-1	Introduction	135
	4-2	Filter, Control, and Predictor Problems	136
		a. Description of the System	136
		b. Integral-Square-Error Problems	137
		c. Mean-Square-Error Problems	140
	4-3	A General Optimal Pulse-Shape Problem	141.
		a. Description of the System	141

		CONTENTS	XI
		b. Maximum Peak Output	143
		c. Maximum of the Average Output	144
	4-4	A General Problem and Solution	144
		a. The Problem	144
		b. Initial Steps to Solution	144
		c. Notation for Spectrum Factorization	147
		d. Solution Using Wiener-Hopf Spectrum Factorization	149
	4-5	Solutions to Filter, Control, and Predictor Problems	150
	4-6	Solutions to Optimal Pulse-Shape Problems	162
	4-7	Non-Wiener-Hopf-Type Frequency-Domain Problems	170
		a. General Comments	170
		b. Pulse Shape for Maximum Output Energy	170
	4-8	Sensitivity Considerations in Design	173
	4-9	Conclusion	182
5	тнғ	SIMPLEX TECHNIQUE AND LINEAR PROGRAMMING	193
J	5-1	Introduction	193
	5-2	The General Problem and Its Standard Form	193
	5-2 5-3	Conversion to the Standard Form	194
	5-4	Analytical Basis	200
	J-4	a. Prelude	200
		b. Convexity	201
		c. Extreme Point and Verticy Properties	203
		d. Optimal P at a Vertex	204
	5-5	Simplex Algorithm Theory	204
	5-6	Simplex Algorithm Mechanics: The Simplex Tableau	209
	5-7	Initializing and Scaling	215
	• ·	a. Avoiding Initial Degeneracy	215
		b. Generating an Initial Basic Feasible Solution	217
		c. Scaling	218
	5-8	Upper-Bounding Algorithm	224
	5-9	Dual Problems	227
		a. Duals in General	227
		b. Symmetric Duals	227
		c. Other Duals	229
	5-10	Sensitivity Analysis	232
		Analog Solutions	234
		a. Analogies	234
		b. Linear Programming on the General-Purpose Analog Computer	235
	5-12	Applications	239
		a. Problems of Economics	239
		b. Control Problems	240

CONTENTS

		c. Communications Problems	244
		d. Circuit Design Applications	248
		e. Field Problems	251
		f. Other Applications	253
	5-1 3	Conclusion	254
6	SEA	RCH TECHNIQUES AND NONLINEAR PROGRAMMING	264
	6-1	Introduction	264
	6-2	Geometrical Interpretation and Scaling	266
		a. Local Properties	266
		b. Regional Properties	267
		c. Scaling and Change of Variables	270
		d. Noise Considerations	271
		e. Constraint Geometry	272
	6-3	One-Dimensional Search	272
		a. Newton-Raphson Search	272
		b. Cubic-Convergent Search without Second Derivatives	274
		c. Quadratic-Convergent Search without Derivatives	277
		d. Fibonacci Search	280
		e. Search by Golden Section	284
		f. One-Dimensional Search in n-Dimensional Space	286
	6-4	Nonsequential Methods	287
		a. Nonsequential Random Search	288
		b. Nonsequential Factorial Search	288
	6-5	Univariate and Relaxation Search	292
		a. Univariate Search	292
		b. Southwell's Relaxation Search	292
		c. Southwell-Synge Search	293
	6-6	Basic Gradient Methods	296
		a. Common Features	296
		b. Continuous Steepest Ascent (Descent)	297
		c. Discrete Steepest Ascent (Descent)	299
		d. Newton Search	307
	6-7	Acceleration-Step Search	309
		a. Two-Dimensional Case	309
		b. n-Dimensional Case: PARTAN	312
	6-8	Conjugate-Direction Methods	314
		a. Conjugate Directions	314
		b. Method of Fletcher and Reeves	319
		c. Davidon's Method via Fletcher and Powell (The DFP	
		Method)	320
	6-9	Other Search Methods	322

		CONTENTS	xiii
		a. Discussion	322
		b. Pattern Search	322
		c. Search by Directed Array	324
		d. Creeping Random Methods	329
		e. Centroid Methods	329
	6-10	Combined Use of Indirect and Direct Methods	331
		a. Equation Solution by Search	331
		b. Reduction of Dimensionality	332
	6-11	Constraints	333
		a. The Nonlinear Programming Problem	333
		b. Outside Penalty Functions for Inequality Constraints	334
		c. Penalty Functions for Equality Constraints	335
		d. Minimization of the Penalized Performance Measure	335
		e. Inside Penalty Functions	339
		f. Equality Constraints and Classical Lagrange Multipliers	341
		g. General Constraints and Lagrange Multipliers	342
		Comparison of Techniques	345
	6-13	Conclusion	350
7	A PI	RINCIPLE OF OPTIMALITY AND DYNAMIC	
	PRO	GRAMMING	367
	7-1	Introduction	367
	7-2	Allocation Problems	369
		a. Problem Statement and Applications	369
		b. Dynamic Programming Approach to Solution	371
	7-3	Efficiency Comparison	378
	7-4	Redundancy to Improve Reliability	378
	7-5	Minimal Chain Problems	380
		a. Chain Networks	380
		b. Forward Solution I	381
		c. Backward Solution I	383
		d. Backward Solution II	383
		e. Comparison of Forward and Backward Solutions	385
	7-6	A Control Problem	386
		a. Statement of the Problem	386
		b. Backward Solutions	387
		c. Forward Solutions	390
	7-7	Numerical Considerations	394
	7-8	A Principle of Optimality	402
	7-9	Placement of Transmission-Line Towers	404
	7-10) n State Variables: Discrete Processes	408
		a. Problems and Di'culties	408

CONTENTS

	b. Series Approximations	411
	c. Lagrange Multipliers	412
	d. Region-Limiting Strategies and Iterated Dynamic	
	Programming	414
	7-11 Approximations in Function and Policy Space	418
	a. A Control Problem	418
	b. An Approximation in Function Space	419
	c. An Approximation in Policy Space	420
	d. Nonoriented Minimal Chain Problems	422
	7-12 Continuous Decision Processes: Discrete Approximations with	
	n State Variables	423
	a. A General Control Problem	423
	b. Recurrence Relations with Prespecified Time Increments	424
	c. A Continuous Recurrence Relation	426
	d. Recurrence Relations with Controlled Time Increments	428
	7-13 Continuous Decision Problems: Calculus of Variations and	
	Extensions	431
	a. The Problem and Its Forward Recurrence Relation	431
	b. Hamilton-Jacobi Equations	433
	c. Costate Equations	434
	d. Hamiltonian Functions	436
	e. Necessary Conditions: A Maximum Principle	436
	f. Necessary Conditions: Classical Calculus of Variations	439
	7-14 Quadratic Minimum-Cost Function and Closed-Loop Control	
	a. A General Case	440
	b. Steady-State Riccati Equations	447
	7-15 A Stochastic Control Problem	450
	7-16 Estimation of State Variables in the Presence of Noise	452
	a. Modal Trajectory Estimation	452
	b. Discrete Kalman-Bucy Filter	457
	7-17 Conclusion	462
8	A MAXIMUM PRINCIPLE	478
	8-1 Introduction	478
	8-2 Preliminary Concepts	479
	8-3 A Canonical Problem Form and Equivalent Problems	481
	8-4 A Maximum Principle	485
	8-5 The Constancy of \mathscr{H}^*	486
	8-6 The General Transversality Condition	493
	8-7 Time Optimal Control	500
	a. Comments	500
	b. A Second-Order System	502

xiv

CONTENTS	XV
c. Optimal Switch-Time Evaluation	510
8-8 Search Techniques for Solution of Boundary-Value Problems	513
a. Comments	513
b. Utilization of \mathscr{H} in a Search Solution	515
c. A Newton-Raphson Algorithm for Linearization of Differen-	
tial Equations and Solution of Two-Point Boundary-Value	
Problems	517
d. Iterative Solutions with Stabilization via Riccati Equations	519
e. A Riccati Transformation	521
8-9 Non-Normal Solutions	523
8-10 Singular Solutions	525
8-11 Equivalent Principles	536
a. An Equivalent Minimum Principle	536
b. Necessary Conditions for End-Point Functionals	537
8-12 Conclusion	539

APPENDICES

A.	MATRIX IDENTITIES AND OPERATIONS	555
в.	TWO-SIDED LAPLACE TRANSFORM THEORY	566
C.	CORRELATION FUNCTIONS AND POWER-DENSITY SPECTRA	572
D.	INEQUALITIES AND ABSTRACT SPACES	580
	AUTHOR INDEX	593
	SUBJECT INDEX	599