CONTENTS

Preface			page v			
1	Bosons					
	1.1	The simple harmonic oscillator	1			
	1.2	Annihilation and creation operators	3			
	1.3	Coupled oscillators: the linear chain	5			
	1.4	Three-dimensional lattices and vector fields	9			
	1.5	The continuum limit	12			
	1.6	Classical field theory	14			
	1.7	Second quantization	18			
	1.8	Klein-Gordon equation	21			
	1.9	Sources of a field, and interactions between fields	22			
	1.10	Example: Rayleigh scattering of phonons	24			
	1,11	Example: Yukawa force	26			
	1.12	Charged bosons	2 8			
2	Feri	mions				
	2.1	Occupation-number representation	32			
	2.2	Annihilation and creation operators: anticommutation	n 33			
	2.3	Second quantization	36			
	2.4	Scattering: connection with statistical mechanics	39			
	2.5	Interactions between particles: momentum conservation	- 41			
	2.6	Fermion-boson interaction	43			
	2.7	Holes and antiparticles	48			

~	n	N	т	E	N	т	c
L	w	1.4		£	TA		-

2	Da-	4	hai		4h 0 0 mm
J	Let.	uur	Da	uon	theory

X

4

3.1	The Brillouin–Wigner series	page~53
3.2	The Heisenberg representation	56
3.3	Interaction representation	60
3.4	Time-integral expansion series	62
3.5	S-matrix	64
3.6	S-matrix expansion: algebraic theory	67
3.7	Diagrammatic representation	74
3.8	Momentum representation	80
3.9	The physical vacuum	86
3.10	Dyson's equation and renormalization	90
Gr	een functions	
4.1	The density matrix	94
4.2	Equation of motion of density operator	98
4.3	Ensembles in thermal equilibrium	99
4.4	The Kubo formula	101
4.5	The one-particle Green function	104
4.6	Energy-momentum representation	107
4.7	Evaluation of Green functions	110
4.8	Two-particle Green functions	112
4.9	The hierarchy of Green functions	116
4.10	Time-independent Green functions	117
4.1	Matrix representation of the Green function	120
4.12	2 Space representation of time-independent Green function	122
4.13	3 The Born series	124
4.14	The T-matrix	127
4 15	5 Evample: impurity states in a metal	131

5	Son	ne aspects of the many-body problem	
	5.1	Quantum properties of macroscopic systems page	135
	5.2	Statistical methods: the Thomas–Fermi approximation	136
	5.3	Hartree self-consistent field	138
	5.4	The Hartree–Fock method	140
	5.5	Diagrammatic interpretation of Hartree–Fock theory	143
	5.6	The Brueckner method	146
	5.7	The dielectric response function	148
	5.8	Spectral representation of dielectric function	150
	5.9	Diagrammatic interpretation of dielectric screening	154
	5.10	The random phase approximation	158
	5.11	The Landau theory of Fermi liquids	162
	5.12	The dilute Bose gas	167
	5.13	The superconducting state	170
6	Rela	ativistic formulations	
	6.1	Lorentz invariance	175
	6.2	Relativistic electromagnetic theory	177
	6.3	The wave equation and gauge invariance	180
	6.4	Quantization of relativistic fields	183
	6.5	Spinors	187
	6.6	The Dirac equation	191
	6.7	The Dirac matrices	193
	6.8	Quantization of the Dirac field	196
	6.9	Interactions between relativistic fields	199
	6.10	Relativistic kinematics	203
	6.11	The analytic S-matrix	207

Index

CONTENTS

•	1 He	algebra of symmetry		
	7.1	Symmetry operations	page	213
	7.2	Representations		215
	7.3	Regular representations of finite groups		219
	7.4	The orthogonality theorem		222
	7.5	Character and class		225
	7.6	Product groups and representations		230
	7.7	Translation groups		235
	7.8	Continuous groups		237
	7.9	The rotation group		241
	7.10	Irreducible representations of the rotation group		244
	7.11	Spinor representations		247
	7.12	SU(2)		249
	7.13	SU(3)		254

259