CONTENT

Chapter I. Basic Experimental Methods of Determining the Thermal Conductivity of	
Liquids and Gases	1
1.1 Definitions and Units of Measurement	1
1.2 Basic Principles and Methods of Measurement of Thermal Conductivity	2
1.3 Experimental Errors in Thermal Conductivity Measurements	12
1.4 Experimental Equipment for the Plane Horizontal Layer Method	24
1.5 Experimental Equipment for the Concentric Cylinder Method	34
1.6 Experimental Equipment for Hot Wire Method	40
1.7 Experimental Equipment for the Dilatometric Method	50
1.8 Experimental Equipment for the Regular Regime Method	55
1.9 The Burhorn Equipment for Nitrogen Plasma in a Temperature Range	
from 6000 to 13,000°K	60
Chapter II Review of Thermal Conductivity Equations for Gases	66
2.1 Kinetic Theory of Gases, Its Application for the Calculation of the	
Thermal Conductivity	66
2.2 Determination of the Coefficient / from Experimental Values of Thermal	
Conductivity	79
2.3 Comparison of Thermal Conductivity of Gases Calculated from Kinetic	
Theory with Experimental Data	81
2.4 Comparison of Thermal Conductivity of Gases Calculated Using the Sonin	
Polynomial Expansion Series with Experimental Data	83
2.5 The Insufficiency of Theoretical Relationships for Thermal	
Conductivity in Dense Gases	87
Chapter III Determination of the Temperature Dependence of Thermal Conductivity of	
Gases at Atmospheric Pressure	88
3.1 Temperature Dependence of Thermal Conductivity of Diatomic and	
Polyatomic Gases at Atmospheric Pressure	89
3.2 Generalized Correlations for Thermal Conductivity of Gases with	
Various Numbers of Atoms at Atmospheric Pressure	90
Chapter IV. Calculation of the Thermal Conductivity of Gases Under Pressure and of	
Liquefied Gases	98
4.1 Methods of Data Analysis on Thermal Conductivity of Compressed Gases	98

4.2 Thermal Conductivity of a Substance in Gas and Liquid Phases	109	
4.3 Experimental Values and Empirical Equations for Thermal Conductivity of		
Compressed Gases and Liquids	110	
4.4 Determination of the Exponent in Thermal Conductivity Equations for		
Gases Under Pressure	140	
4.5 Thermal Conductivity of Air	142	
Chapter V. Thermal Conductivity of Gas Mixtures		144
5.1 Review of Thermal Conductivity Equations for Mixtures of Chemically		144
Inert Gases at Atmospheric Pressure	145	
5.2 Thermal Conductivity of Mixtures of Reactive Gases	143	
5.3 Thermal Conductivity of Gas Mixtures at Elevated Pressures	165	
Chapter VI. Methods of Calculating the Thermal Conductivity of a Plasma	166	
6.1 Calculation of the Thermal Conductivity of Nitrogen Plasma at Temperatures		
up to 13,000° K	166	
6.2 Calculation of Thermal Conductivity of Air Plasma at Temperatures up to		
12,000°K and Pressures form 0.001 to 1,000 atm	173	
Chapter VII. Thermal Conductivity of Liquids at Atmospheric Pressure	182	
7.1 Empirical Equations for Calculation to Thermal Conductivity of Liquids		
at Atmospheric Pressure	184	
7.2 Theoretical Calculations of Thermal Conductivity of Liquids	188	
7.3 Experimental Values of Thermal Conductivity of Liquids as a Function		
of Temperature	198	
Chapter VIII. Thermal Conductivity of Liquids Under Pressure	206	
Chapter IX. Thermal Conductivity of Liquid Solutions at Atmospheric Pressure	211	
9.1 Review of Equations for the Thermal Conductivity of Solutions	211	
9.2 Composition of Solutions. Weight and Volume Fractions. Calculation Formulas	212	
9.3 Limits of Applicability of the Additive Rule for Calculation of Thermal		
Conductivity of Liquid Solutions	213	
Chapter X. Thermal Conductivity of Aqueous Electrolyte Solutions	223	
References	234	