Contents

Preface	xv
Part One Introduction	
1. History of Chemical Engineering and Mass Transfer Operations	3
References 5	
2. Transport Phenomena vs Unit Operations Approach	7
References 10	
3. Basic Calculations	11
Introduction11Units and Dimensions11Conversion of Units15The Gravitational Constant g_c 17Significant Figures and Scientific Notation17References18	
4. Process Variables	19
Introduction 19 Temperature 20 Pressure 22 Moles and Molecular Weight 23 Mass, Volume, and Density 25 Viscosity 25 Reynolds Number 28 pH 29 Vapor Pressure 31 Ideal Gas Law 31 References 35	

5. Equilibrium vs Rate Considerations

37	
37	
Chemical Reactions	
40	
	37 37 actions 40

6. Phase Equilibrium Principles

Introduction 41		
Gibb's Phase Rule 44		
Raoult's Law 45		
Henry's Law 53		
Raoult's Law vs Henry's La	w 59	
Vapor-Liquid Equilibrium i	in Nonideal Solutions	61
Vapor-Solid Equilibrium	64	
Liquid–Solid Equilibrium	68	
References 69		

7. Rate Principles

Introduction 71 The Operating Line 72 Fick's Law 73 Diffusion in Gases 75 **Diffusion in Liquids** 79 Mass Transfer Coefficients 80 Individual Mass Transfer Coefficients 81 Equimolar Counterdiffusion 83 Diffusion of Component A Through Non-diffusing Component B 84 **Overall Mass Transfer Coefficients** 87 Equimolar Counterdiffusion and/or Diffusion in Dilute Solutions 88 Gas Phase Resistance Controlling 89 Liquid Phase Resistance Controlling 89 **Experimental Mass Transfer Coefficients** 90

References 93

Part Two Applications: Component and Phase Separation Processes

8. Introduction to Mass Transfer Operations

Introduction 97

41

Classification of Mass Transfer Operations	97
Contact of Immiscible Phases 98 Miscible Phases Separated by a Membrane Direct Contact of Miscible Phases 102	101
Mass Transfer Equipment 102	
Distillation 103	
Absorption 104	
Adsorption 104	
Extraction 104	
Humidification and Drying 105	
Other Mass Transfer Unit Operations 105	1
The Selection Decision 106	
Characteristics of Mass Transfer Operations	107
Unsteady-State vs Steady-State Operation	108
Flow Pattern 109	
Stagewise vs Continuous Operation 116	
References 117	

9. Distillation

Introduction 119
Flash Distillation 120
Batch Distillation 127
Continuous Distillation with Reflux 133
Equipment and Operation 133
Equilibrium Considerations 140
Binary Distillation Design: McCabe-Thiele Graphical Method 142
Multicomponent Distillation: Fenske-Underwood-Gilliland (FUG)
Method 161
Packed Column Distillation 184
References 185

10. Absorption and Stripping

Introduction 187 Description of Equipment 189

> Packed Columns 189 Plate Columns 196

Design and Performance Equations—Packed Columns 200

Liquid Rate 200 Column Diameter 207 Column Height 210 Pressure Drop 224

x Contents

Design and Performance Equations—Plate Columns227Stripping235Packed vs Plate Tower Comparison241Summary of Key Equations242References243

11. Adsorption

Introduction 245 Adsorption Classification 247 Activated Carbon 248 Activated Alumina 248 Silica Gel 249 Molecular Sieves 249 Adsorption Equilibria 250 Freundlich Equation 253 Langmuir Isotherms 253 Description of Equipment 257 **Design and Performance Equations** 264 Regeneration 283 References 291

12. Liquid-Liquid and Solid-Liquid Extraction

Introduction 293 Liquid-Liquid Extraction 294 The Extraction Process 294 Equipment 295 Solvent Selection 298 Equilibrium 300 **Graphical Procedures** 301 Analytical Procedures 304 Solid-Liquid Extraction (Leaching) 312 Process Variables 313 Equipment and Operation 315 **Design and Predictive Equations** 317

References 325

13. Humidification and Drying

Introduction327Psychrometry and the Psychrometric Chart327Humidification339

293

245

Equipment 341 Describing Equations 343

Drying 347

Rotary Dryers352Spray Dryers361

References 369

14. Crystallization

Introduction 371 Phase Diagrams 373 The Crystallization Process 379 Crystal Physical Characteristics 382 Equipment 391 **Describing Equations** 393 **Design** Considerations 397 References 404

15. Membrane Separation Processes

Introduction 407	
Reverse Osmosis 408	
Describing Equations	414
Ultrafiltration 420	
Describing Equations	421
Microfiltration 427	
Describing Equations	428
Gas Permeation 432	
Describing Equations	433
References 437	

16. Phase Separation Equipment

Introduction 439 Fluid-Particle Dynamics 442 Gas-Solid (G-S) Equipment 446 Gravity Settlers 447 Cyclones 449 **Electrostatic Precipitators** 454 Venturi Scrubbers 457 Baghouses 461

407

Gas-Liquid (G-L) Equipment 465 Liquid-Solid (L-S) Equipment 467 Sedimentation 467 Centrifugation 471 Flotation 472 Liquid-Liquid (L-L) Equipment 475 Solid-Solid (S-S) Equipment 477 High-Gradient Magnetic Separation 477 Solidification 477

References 479

Part Three Other Topics

17. Other and Novel Separation Processes

Freeze Crystallization 484 Ion Exchange 484 Liquid Ion Exchange 484 **Resin Adsorption** 485 Evaporation 485 Foam Fractionation 486 Dissociation Extraction 486 Electrophoresis 486 Vibrating Screens 487 References 488

18. Economics and Finance

Introduction489The Need for Economic Analyses489Definitions491

Simple Interest 491 Compound Interest 491 Present Worth 492 Evaluation of Sums of Money 492 Depreciation 493 Fabricated Equipment Cost Index 493 Capital Recovery Factor 493 Present Net Worth 494 Perpetual Life 494 Break-Even Point 495 Approximate Rate of Return 495

Exact Rate of Return495Bonds496Incremental Cost496

Principles of Accounting 496 Applications 499 References 511

19. Numerical Methods

Introduction513Applications514References531

20. Open-Ended Problems

Introduction 533 Developing Students' Power of Critical Thinking 534 Creativity 534 Brainstorming 536 **Inquiring Minds** 536 Failure, Uncertainty, Success: Are They Related? 537 Angels on a Pin 538 Applications 539 References 547

21. Ethics

Introduction 549 **Teaching Ethics** 550 Case Study Approach 551 Integrity 553 Moral Issues 554 Guardianship 556 **Engineering and Environmental Ethics** 557 Future Trends 559 Applications 561 References 563

22. Environmental Management and Safety Issues

Introduction565Environmental Issues of Concern566Health Risk Assessment568

Risk Evaluation Process for Health 570

533

549

Hazard Risk Assessment 571

Risk Evaluation Process for Accidents 572

Applications574References591

595

623

Appendix A. Units

Appendix C. Steam Tables	615
Appendix B. Miscellaneous Tables	605
A.7 Selected Common Abbreviations 603	
A.6 Conversion Constants (SI) 599	
A.5 SI Multiples and Prefixes 599	
A.4 Two Supplementary Units 598	
A.3 Seven Base Units 597	
A.2 The SI System 597	
A.1 The Metric System 595	

Index