530 HALp 3rd ed.

contents

1-1 Physical Quantities, Standards, and Units 3 1-2 The International System of Units 4 1-3 The Standard of Length 6 1-4 The Standard of Mass 8 1-5 The Standard of Time 9

∎ MEASUREMENT 3

VECTORS

15

2-1 Vectors and Scalars 15

2-2 Addition of Vectors, Geometrical Method 16

2-3 Resolution and Addition of Vectors, Analytic Method 17

2-4 Multiplication of Vectors 21

2-5 Vectors and the Laws of Physics 24

3-1 Mechanics 30

3-2 Particle Kinematics 30

3-3 Average Velocity 31

3-4 Instantaneous Velocity 32

3-5 One-Dimensional Motion – Variable Velocity 33 3-6 Acceleration 35

3-7 One-Dimensional Motion – Variable Acceleration 37

3-8 One-Dimensional Motion - Constant Acceleration 38

3-9 Consistency of Units and Dimensions 40

3-10 Freely Falling Bodies 43

3-11 Equations of Motion in Free Fall 44

4-1 Displacement, Velocity, and Acceleration 53
4-2 Motion in a Plane with Constant Acceleration 54
4-3 Projectile Motion 55
4-4 Uniform Circular Motion 59

4-4 Uniform Circular Motion 59

4-5 Tangential Acceleration in Circular Motion 63
 4-6 Relative Velocity and Acceleration 64

3 MOTION IN ONE DIMENSION 30

4 MOTION IN A PLANE 53

5-1 Classical Mechanics 72 5 5-2 Newton's First Law 73 5-3 Force 76 72 5-4 Mass; Newton's Second Law 77 5-5 Newton's Third Law of Motion 78 5-6 Systems of Mechanical Units 81 5-7 The Force Laws 82 5-8 Weight and Mass 83 5-9 A Static Procedure for Measuring Forces 85 5-10 Some Applications of Newton's Laws of Motion 85 6-1 Introduction 97 6-2 Frictional Forces 97 6-3 The Dynamics of Uniform Circular Motion 102 97 6-4 Classification of Forces; Inertial Forces 106 6-5 Classical Mechanics, Relativistic Mechanics, and Quantum Mechanics 107 7-1 Introduction 116 7 7-2 Work Done by a Constant Force 117 7-3 Work Done by a Variable Force-One-Dimensional Case 121 7-4 Work Done by a Variable Force - Two-Dimensional Case 122

7-5 Kinetic Energy and the Work-Energy Theorem 124 7-6 Significance of the Work-Energy Theorem 127 7-7 Power 127

8-1 Introduction 134

8-2 Conservative Forces 134

8-3 Potential Energy 137

8-4 One-Dimensional Conservative Systems 141 8-5 The Complete Solution of the Problem for One-Dimensional

Forces Depending on Position Only 144

8-6 Two- and Three-Dimensional Conservative Systems 147

8-7 Nonconservative Forces 148

8-8 The Conservation of Energy 151

9-1 Center of Mass 162

9-2 Motion of the Center of Mass 166

9-3 Linear Momentum of a Particle 168

9-4 Linear Momentum of a System of Particles 169

9-5 Conservation of Linear Momentum 170

9-6 Some Applications of the Momentum Principle 171

9-7 Systems of Variable Mass 174

10-1 What is a Collision? 187

10-2 Impulse and Momentum 188

10-3 Conservation of Momentum during Collisions 189

10-4 Collisions in One Dimension 190

10-5 The "True" Measure of a Force 196

10-6 Collisions in Two and Three Dimensions 197

10-7 Cross Section 201

10-8 Reactions and Decay Processes 205

11-1 Rotational Motion 215

11-2 Rotational Kinematics - the Variables 217

11-3 Rotation with Constant Angular Acceleration 218

11-4 Rotational Quantities as Vectors 220

11-5 Relation between Linear and Angular Kinematics for a Particle in

Circular Motion-Scalar Form 223

PARTICLE DYNAMICS-72

PARTICLE DYNAMICS-97

WORK AND ENERGY

8 The Conservation 0 Energy 134

U CONSERVATION OF LINEAR MOMENTUM 162

10 Collisions 187

ROTATIONAL KINEMATICS 215 1-6 Relation between Linear and Angular Kinematics for a Particle in Circular Motion–Vector Form 224

12-1 Introduction 231

12-2 Torque Acting on a Particle 231

12-3 Angular Momentum of a Particle 233

12-4 Systems of Particles 236

12-5 Kinetic Energy of Rotation and Rotational Inertia 237

12-6 Rotational Dynamics of a Rigid Body 242

12-7 The Combined Translational and Rotational Motion of a Rigid Body 248

13-1 Introduction 260

13-2 The Top 260

13-3 Angular Momentum and Angular Velocity 263

13-4 Conservation of Angular Momentum 268

13-5 Some Other Aspects of the Conservation of Angular

Momentum 272

13-6 Rotational Dynamics - A Review 274

14-1 Rigid Bodies 281

14-2 The Equilibrium of a Rigid Body 281

14-3 Center of Gravity 283

14-4 Examples of Equilibrium 285

14-5 Stable, Unstable, and Neutral Equilibrium of Rigid Bodies in a Gravitational Field 291

15-1 Oscillations 299

15-2 The Simple Harmonic Oscillator 301 15-3 Simple Harmonic Motion 303

15-4 Energy Considerations in Simple Harmonic Motion 307

15-5 Applications of Simple Harmonic Motion 310

15-5 Applications of Simple Harmonic Motion

156 Relation between Simple Harmonic Motion and Uniform Circular

Motion 316

15-7 Combinations of Harmonic Motions 318

15-8 Two-Body Oscillations 320

15-9 Damped Harmonic Motion 322

15-10 Forced Oscillations and Resonance 323

16-1 Historical Introduction 334

16-2 The Law of Universal Gravitation 338

16-3 The Constant of Universal Gravitation, G 339

16-4 Inertial and Gravitational Mass 342

16-5 Variations in Acceleration Due to Gravity 344

16-6 Gravitational Effect of a Spherical Distribution of Mass 347

16-7 The Motions of Planets and Satellites 350

16-8 The Gravitational Field 353

16-9 Gravitational Potential Energy 354

16-10 Potential Energy for Many-Particle Systems 357 16-11 Energy Considerations in the Motions of Planets and

Satellites 359

16-12 The Earth as an Inertial Reference Frame 360 16-13 The Principle of Equivalence 360

17-1 Fluids 370

17-2 Pressure and Density 371

17-3 The Variation of Pressure in a Fluid at Rest 372

17-4 Pascal's Principle and Archimedes' Principle 376

17-5 Measurement of Pressure 377

12 ROTATIONAL DYNAMICS I 231

13 ROTATIONAL DYNAMICS II AND THE CONSERVATION OF ANGULAR MOMENTUM 260

14 EQUILIBRIUM OF RIGID BODIES 281

15 OSCILLATIONS 299

16 GRAVITATION 334

17 FLUID STATICS 370 18-1 General Concepts of Fluid Flow 385 18-2 Streamlines 386

18-3 The Equation of Continuity 387

18-4 Bernoulli's Equation 389

18-5 Applications of Bernoulli's Equation and the Equation of

Continuity 391

18-6 Conservation of Momentum in Fluid Mechanics 394 18-7 Fields of Flow 394

> 19-1 Mechanical Waves 404 - 19-2 Types of Waves 405 19-3 Traveling Waves 407 19-4 The Superposition Principle 410 19-5 Wave Speed 412 19-6 Power and Intensity in Wave Motion 415 19-7 Interference of Waves 417 19-8 Complex Waves 419 19-9 Standing Waves 420 19-10 Resonance 424

20-1 Audible, Ultrasonic, and Infrasonic Waves 433 20-2 Propagation and Speed of Longitudinal Waves 434 20-3 Traveling Longitudinal Waves 436 20-4 Standing Longitudinal Waves 439 20-5 Vibrating Systems and Sources of Sound 440 20-6 Beats 444 20-7 The Doppler Effect 445

21-1 Macroscopic and Microscopic Descriptions 457 21-2 Thermal Equilibrium – The Zeroth Low of Thermodynamics 458 21-3 Measuring Temperature 459 21-4 The Constant Volume Gas Thermometer 462 21-5 Ideal Gas Temperature Scale 462 21-6 The Celsius and Fahrenheit Scales 464 21-7 The International Practical Temperature Scale 465 21-8 Temperature Expansion 466

22-1 Heat, a Form of Energy 475 22-2 Quantity of Heat and Specific Heat 477 22-3 Molar Heat Capacities of Solids 479 22-4 Heat Conduction 480 22-5 The Mechanical Equivalent of Heat 482 22-6 Heat and Work 483 22-7 The First Law of Thermodynamics 486 22-8 Some Applications of the First Law of Thermodynamics 488

> 23-1 Introduction 497 23-2 Ideal Gas – A Macroscopic Description 498 23-3 An Ideal Gas – Microscopic Definition 500 23-4 Kinetic Calculation of the Pressure 501 23-5 Kinetic Interpretation of Temperature 504 23-6 Intermolecular Forces 506 23-7 Specific Heats of an Ideal Gas 507 23-8 Equipartition of Energy 512

24-1 Mean Free Path 522 24-2 Distribution of Molecular Speeds 524 24-3 Experimental Confirmation of the Maxwellian Distribution 527 24-4 Brownian Motion 529 24-5 The van der Waals Equation of State 531 24-1 Mean Free Path 522 24-2 Distribution of Molecular Speeds 524 *KINETIC THEORY OF GASES – II* 522

22 HEAT AND THE FIRST LA OF THERMODYNAMICS 475

23 KINETIC THEORY OF GASES–I 497

20 SOUND WAVES

433

19

404

21 *TEMPERATURE* 457

.

WAVES IN ELASTIC MED

18 FLUID DYNAMICS 385 25-1 Introduction 539 25-2 Reversible and Irreversible Processes 539 25-3 The Carnot Cycle 541 25-4 The Second Law of Thermodynamics 545 25-5 The Efficiency of Engines 547 25-6 The Thermodynamic Temperature Scale 549 25-7 Entropy – Reversible Processes 550 25-8 Entropy – Irreversible Processes 553 25-9 Entropy and the Second Law 555 25-10 Entropy and Disorder 557

> 26-1 Electromagnetism – a Preview 565 26-2 Electric Charge 566 26-3 Conductors and Insulators 567 26-4 Coulomb's Law 568 26-5 Charge is Quantized 571 26-6 Charge and Matter 571 26-7 Charge is Conserved 575

27-1 The Electric Field 580 27-2 The Electric Field E 582 27-3 Lines of Force 582 27-4 Calculation of E 586 27-5 A Point Charge in An Electric Field 590 27-6 A Dipole in An Electric Field 592

28-1 Introduction 601 28-2 Flux 601 28-3 Flux of the Electric Field 603 28-4 Gauss's Law 606 28-5 Gauss's Law and the Coulomb's Law 606 28-6 An Insulated Conductor 607 28-7 Experimental Proof of Gauss's Law and Coulomb's Laws 608 28-8 Gauss's Law – Some Applications 610 28-9 The Nuclear Model of the Atom 614

> 29-1 Electrical Potential 622 29-2 Potential and the Electric Field 625 29-3 Potential Due to a Point Charge 627 29-4 A Group of Point Charges 629 29-5 Potential Due to a Dipole 630 29-6 Electric Potential Energy 633 29-7 Calculation of E From V 635 29-8 An Insulated Conductor 638 29-9 The Electrostatic Generator 640

30-1 Capacitance 650 30-2 Calculating Capacitance 652 30-3 Energy Storage in An Electric Field 655 30-4 Parallel-Plate Capacitor With Dielectric 657 30-5 Dielectrics – An Atomic View 660 30-6 Dielectrics and Gauss' Law 662 30-7 Three Electric Vectors 665

31-1 Current and Current Density 675 31-2 Resistance, Resistivity, and Conductivity 678 31-3 Ohm's Law 682 31-4 Ohm's Law – A Microscopic View 684 31-5 Energy Transfers in an Electric Circuit 687 **25** ENTROPY AND THE SECOND LAW OF THERMODYNAMICS 539

26 Charge and Matter 565

27 THE ELECTRIC FIELD 580

28 GAUSS'S LAW 601

29 ELECTRIC POTENTIAL 622

30 CAPACITORS AND DIELECTRICS 650

31 *CURRENT AND RESISTANCE* 675 32-1 Electromotive Force 694 32-2 Calculating the Current 697 32-3 Other Single-Loop Circuits 698 32-4 Potential Differences 699 32-5 Multiloop Circuits 701 32-6 Measuring Currents and Potential Differences 704 32-7 The Potentiometer 704 32-8 RC Circuits 705

> 33-1 The Magnetic Field 717 33-2 The Definition of B 718 33-3 Magnetic Force on a Current 721 33-4 Torque on a Current Loop 725 33-5 The Hall Effect 728 33-6 Circulation Charges 730 33-7 Cyclotrons and Synchotrons 732 33-8 The Discovery of the Electron 736

> > 34-1 Ampere's Law 746 34-2 B Near a Long Wire 750 34-3 Lines of B 752 34-4 Two Parallel Conductors 753 34-5 B For a Solenoid 755 34-6 The Biot-Savart Law 758

35-1 Faraday's Experiments 770 35-2 Faraday's Law of Induction 771 35-3 Lenz's Law 772 35-4 Induction – A Quantitative Study 774 35-5 Time-Varying Magnetic Fields 778 35-6 The Betatron 781 35-7 Induction and Relative Motion 783

36-1 Inductance 795 36-2 Calculation of Inductance 796 36-3 An *LR* Circuit 798 36-4 Energy and the Magnetic Field 801 36-5 Energy Density and the Magnetic Field 803 36-6 Mutual Inductance 805

36-6 Mutual Inductance 805 37-1 Poles and Dipoles 812 37-2 Gauss' Law for Magnetism 817

37-3 The Magnetism of the Earth 817

37-4 Paramagnetism 820

37-5 Diamagnetism 822

37-6 Ferromagnetism 825

37-7 Nuclear Magnetism 829

37-8 Three Magnetic Vectors 832

38-1 LC Oscillations 841 38-2 Analogy to Simple Harmonic Motion 844 38-3 Electromagnetic Oscillations – Quantitative 845 38-4 Lumped and Distributed Elements 848 38-5 Electromagnetic Resonant Cavity 850

> 39-1 Introduction 857 39-2 RCL Elements, Considered Separately 858 39-3 The Single-Loop RCL Circuit 862 39-4 Power in Alternating Current Circuits 864

32 ELECTROMOTIVE FOR AND CIRCUITS 694

33 The Magnetic Field 717

34 AMPERE'S LAW 746

35 FARADAY'S LAW OF INDUCTION 770

36 *INDUCTANCE* 795

37 *MAGNETIC PROPERT OF MATTER 812*

38

ELECTROMAGNETIC OSCILLATIONS 841

39 *Alternating Curr* 857 39-5 Resonance in Alternating Current Circuits 866
 39-6 Alternating Current Rectifiers and Filters 868
 39-7 The Transformer 872

40-1 The Basic Equations of Electromagnetism 880 40-2 Induced Magnetic Fields 882 40-3 Displacement Current 884 40-4 Maxwell's Equations 885 40-5 Maxwell's Equations and Cavity Oscillations 886

41-1 Introduction 893 41-2 The Electromagnetic Spectrum 893 41-3 Electromagnetic Waves From Space 896 41-4 Transmission Lines 897 41-5 Coaxial Cable – Fields and Currents 899 41-6 Waveguide 902 41-7 Radiation 904 41-8 Traveling Waves and Maxwell's Equations 905 41-9 The Poynting Vector 909

> 42-1 Introduction 918 42-2 Energy and Momentum 919 42-3 The Speed of Light 922 42-4 Moving Sources and Observers 927 42-5 Doppler Effect 929

43-1 Reflection and Refraction 938 43-2 Huygens' Principle 943 43-3 Huygens' Principle and the Law of Reflection 944 43-4 Huygens' Principle and the Law of Refraction 944 43-5 Total Internal Reflection 947 43-6 Fermat's Principle 949

44-1 Geometrical Optics and Wave Optics 957
44-2 Spherical Waves – Plane Mirror 959
44-3 Spherical Waves – Spherical Mirror 963
44-4 Spherical Refracting Surface 969
44-5 Thin Lenses 973
44-6 Optical Instruments 980

45-1 Young's Experiment 994 45-2 Coherence 998 45-3 Intensity in Young's Experiment 1002 45-4 Adding Wave Disturbances 1004 45-5 Interference in Thin Films 1006 45-6 Optical Reversibility and Phase Changes on Reflection 1010 45-7 Michelson's Interferometer 1011 45-8 Michelson's Interferometer and Light Propagation 1013

46-1 Introduction 1023 46-2 Single Slit 1025 46-3 Single Slit – Qualitative 1028 46-4 Single Slit – Quantitative 1030 46-5 Diffraction at a Single Aperture 1034 46-6 Double Slit Interference and Diffraction Combined 1037

> 47-1 Introduction 1047 47-2 Multiple Slits 1047 47-3 Diffraction Gratings 1051

40 *MAXWELL'S EQUATIONS* 880

41

ELECTROMAGNETIC WAVES 893

42

THE NATURE AND PROPAGATION OF LIGHT 918

43

REFLECTION AND REFRACTION-PLANE WAVES AND PLANE SURFACES 938

44

REFLECTION AND REFRACTION—SPHERIÇAL WAVES AND SPHERICAL SURFACES 957

45 *INTERFERENCE* 994

46 DIFFRACTION 1023

47 GRATINGS AND SPECTRA 1047 47-4 Resolving Power of a Grating 1055 47-5 X-Ray Diffraction 1056 47-6 Bragg's Law 1060

48-1 Polarization 1069 48-2 Polarizing Sheets 1071 48-3 Polarization by Reflection 1073 48-4 Double Refraction 1075 48-5 Circular Polarization 1081 48-6 Angular Momentum of Light 1084 48-7 Scattering of Light 1084 48-8 Double Scattering 1086

49-1 Sources of Light 1091 49-2 Cavity Radiators 1092 49-3 Planck's Radiation Formula 1094 49-4 Photoelectric Effect 1096 49-5 Einstein's Photon Theory 1098 49-6 The Compton Effect 1100 49-7 Line Spectra 1103

49-8 Atomic Models The Bohn Hydrogen Atom 1105

50-1 Matter Waves 1117

50-2 Atomic Structure and Standing Waves 1120

50-3 Wave Mechanics 1121

50-4 Meaning of Ψ 1123

50-5 The Uncertainty Principle 1125

I Relation between Linear and Angular Kinematics for a Particle

Moving in a Plane A1

II Polar Vectors and Axial Vectors A4

III The Wave Equation for a Stretched String A5

IV Derivation of Maxwell's Speed Distribution Law A7

V Special Relativity – A Summary of Conclusions A9 VI The Differential Form of Maxwell's Equations and the

Electromagnetic Wave Equation A14

A The International System of Units A20

B Some Fundamental Constants of Physics A23

C Solar, Terrestrial, and Lunar Data A24

D The Solar System A25

E Periodic Table of the Elements A26

F The Particles of Physics A27

G Conversion Factors A28

H Mathematical Symbols and the Greek Alphabet A33

I Mathematical Formulas A33

J Trigonometric Functions A36

K Nobel Prizes in Physics A36

L The Gaussian System of Units A41

A43 INDEX

48 *POLARIZATION* 1069

49 *LIGHT AND QUANTUM PHYSICS* 1091

50 🗽

WAVES AND PARTICLES

SUPPLEMENTARY TOPIC

APPENDICES

5

••