Contents

1. INTRODUCTION TO MECHANICS

1-1 Introduction 1 1-2 Definitions 1 1-3 Experiment and Theory 2 1-4 Error 2
1-5 Scale 3 1-6 Units 3 1-7 Basic Definitions in Mechanics 3 1-8 Conversion of Units 5 1-9 Summary 5 Problems 6

2. DESCRIPTIVE MATHEMATICS IN PHYSICS

2-1 Introduction 7 2-2 Coordinate Systems 7 2-3 Trigonometry 9 2-4 Relationships Between Coordinate Systems 10 2-5 Vectors 10 2-6 Components of Vectors 12 2-7 Vector Subtraction 14 2-8 Addition (or Subtraction) of More Than Two Vectors 14 2-9 Summary 14 Problems 15

3. KINEMATICS OF POINT MASSES

3-1 Introduction 17 3-2 The Position Vector and Displacement 17 3-3 Composition of Displacements (Moving Observers) 18 3-4 Average Velocity 20 3-5 Uniform Velocity (Rectilinear Motion) 20 3-6 Relative Velocities (Moving Reference Frames) 21 3-7 Change in Velocity 23 3-8 Summary 24 Problems 25

4. INTERACTION OF PARTICLES (MASS, MOMENTUM, AND FORCE)

4-1 Introduction 27 4-2 Mass 27 4-3 Momentum 30 4-4 Conservation of Momentum 30 4-5 Average Force 31 4-6 Newton's Second Law 32 4-7 Newton's -First Law 33 4-8 Newton's Third Law 33 4-9 Gravitational Units 34 4-10 Summary 34 Problems 35

5. FORCES; EQUILIBRIUM

5-1 Introduction **38** 5-2 Forces Due to Elasticity (Calibration of a Spring) **39** 5-3 Gravitational Force at the Earth's Surface (Weight) **40** 5-4 Gravitational Force Between Point Masses **42** 5-5 Electric Force **43** 5-6 Contact Forces **43** 5-7 Friction **44** 5-8 Tension and Thrust (Strings and Rods) **45** 5-9 Systems **46** 5-10 Statics of Point Masses **46** 5-11 Summary **50** Problems **51**

6. KINEMATICS (INSTANTANEOUS VELOCITY AND ACCELERATION)

6-1 Introduction 55 6-2 Velocity 55 6-3 Acceleration 58 6-4 Instantaneous Acceleration 59 6-5 Integration Applied to Kinematics 59 6-6 Motion in One Dimension (Rectilinear Motion) 61 6-7 Two-Dimensional Motion (Cartesian Components 64 6-8 Two-Dimensional Motion (Polar Coordinates) 65 6-9 Noncircular Motion 69 6-10 The Vector Product 72 6-11 Summary 73 Problems 75

viii CONTENTS

7. DYNAMICS (INSTANTANEOUS QUANTITIES)

7-1 Introduction 79 7-2 Conservation of Momentum While Velocity Is Changing 79
7-3 Instantaneous Force 80 7-4 Newton's Laws of Motion 80 7-5 Single Forces 81
7-6 Application of Newton's Laws 82 7-7 Moving Coordinate Systems 85 7-8 Twoand Three-Dimensional Motion 86 7-9 The Third Law in Circular Motion 89 7-10
Forces by Streams of Material 90 7-11 Summary 91 Problems 92

8. PERIODIC MOTION

8-1 Introduction 99 8-2 Periodic Motion Kinematics in General 99 8-3 Circular Motion; Derivatives of the Sine and Cosine 100 8-4 Kinematics of Simple Harmonic Motion 101 8-5 Dynamics of a Free Simple-Harmonic Oscillator 104 8-6 Linear Force Approximations 105 8-7 Analysis of Complex Periodic Motion 106 8-8 Harmonic Oscillator under External Forces 107 8-9 Nonharmonic Driving Forces 108 8-10 Summary 109 Problems 110

9. IMPULSE, WORK, AND ENERGY

9-1 Introduction 114 9-2 Impulse and Momentum 114 9-3 Work 116 9-4 Rectilinear Motion with Constant Force (Direction and Magnitude) 117 9-5 Rectilinear Motion with Uniform Friction Force 118 9-6 Rectilinear Motion with a Position-Dependent Force 118 9-7 Work Expressed as an Ordinary Integral: Power 119 9-8 Work and Energy 119 9-9 Potential Energy in Rectilinear Motion 120 9-10 Work by Friction: Heat Energy 121 9-11 Kinetic Energy in Rectilinear Motion 121 9-12 Conservation of Energy 122 9-13 Two-Dimensional Motion 123 9-14 Kinetic Energy in Two-Dimensional Motion 125 9-15 Forces of Constraint 126 9-16 Two-Dimensional Motion near the Earth 126 9-17 Energy in Central Force Problems 128 9-18 Systems with Two or More Conservative Forces 130 9-19 Collisions and Explosions 130 9-20 Summary 132 Problems 134

10. GRAVITATION, ANGULAR MOMENTUM, AND SATELLITES

10-1 Introduction 141 10-2 The Universality of Gravitation 141 10-3 Effect of Finite Size 142 10-4 Conservation of Angular Momentum 146 10-5 Angular Momentum as a Vector 149 10-6 Satellite Motion 149 10-7 Summary 150 Problems 151

11. CENTER OF MASS; NONINERTIAL REFERENCE FRAMES

11-1 Introduction 155 11-2 Center of Mass 155 11-3 Interaction of Two Point Masses 156 11-4 Systems of More Than Two Bodies 157 11-5 Noninertial Reference Frames 157 11-6 Linearly Accelerated Reference Frames 158 11-7 Coordinate Frames Rotating at Uniform Angular Velocity 160 11-8 Summary 162 Problems 163

12. SUMMARY IN DEDUCTIVE FORM

12-1 Introduction 166 12-2 Development of Mechanics in This Text 166 12-3 Development of Mechanics in Deductive Form 167 12-4 Force Laws 169 12-5 Summary 170

13. SPECIAL RELATIVITY

13-1 Introduction 171 13-2 Newtonian Relativity in Space 171 13-3 Galilean Transformation 172 13-4 Newtonian Time 172 13-5 Velocity of Light 173 13-6 The Nature of Light 173 13-7 The Ether as a Medium for Light Propagation 174 13-8 The Postulates of Special Relativity 178 13-9 Dilation of Time Intervals 178 13-10 Length Contraction 183 13-11 Point Transformation 185 13-12 Simultaneity 187 13-13 Velocity Transformation 191 13-14 Relativistic Mass Increase 192 13-15 Mass and Energy 193 13-16 Summary 195 Problems 197

14. RIGID BODIES

14–1 Introduction **200** 14-2 Description of a Rigid Body 200 14-3 Translation of a Rigid Body 201 14–4 Rotation of a Rigid Body 201 14-5 Mixed Displacements 201 14-6 Kinematics of Rotation 201 14-7 Moments 203 14-8 Dynamics of Translation 208 14-9 Dynamics of Rotation **210** 14-10 Equilibrium Conditions for a Rigid Body 14-11 Center of Gravity 215 14-12 Applications of Rigid-Body Mechanics 216 214 14-13 Work and Energy 218 14-14 Conservation of Angular Momentum 220 14 - 15Rotation in Three Dimensions **222** 14–16 Precession **224** 14-17 Conservation of Angular Momentum of Systems of Rigid Bodies 225 14-18 Summary 227 Problems 229

15. TEMPERATURE, THE GAS LAWS, AND HEAT

15-1 The Nature of Thermodynamics 233 15-2 Temperature 233 15-3 The Law of Gay-Lussac; The Centigrade and Kelvin Scales 235 15-4 Boyle's Law; The Ideal Gas 237 15-5 Equation of State 237 15-6 Avogadro's Law 239 15-7 Temperature of a Substance 239 15-8 Heat and Calorimeters 240 15-9 Change of State; Latent Heat 242 15-10 Heat Transfer 243 15-11 Summary 245 Problems 246

16. THE FIRST LAW OF THERMODYNAMICS

16-1 Introduction 249 16-2 The Mechanical Equivalent of Heat 250 16-3 Mechanical Work 251 16-4 Internal Energy 253 16-5 Statement of the First Law of Thermodynamics 253 16-6 Specific Heat of an Ideal Gas at Constant Volume; Internal Energy 253 16-7 Specific Heat of an Ideal Gas at Constant Pressure 255 16-8 Compression and Expansion of Gases 256 16-9 The Carnot Heat Engine 258 16-10 Summary 264 Problems 266

17. THE SECOND LAW OF THERMODYNAMICS

17-1 Introduction 268 17-2 Statements of the Second Law 268 17-3 The Carnot Refrigerator 268 17-4 Extensions of the Carnot Theorem 270 17-5 The Thermodynamic Temperature Scale 272 17-6 Entropy 273 17-7 Perpetual Motion 276 17-8 Summary 276 Problems 278

18. KINETIC THEORY OF HEAT

18-1 Introduction 279 18-2 The Pressure of an Ideal Gas 279 18-3 Temperature and Specific Heat 282 18-4 Direct Measurement of Velocities 282 18-5 Brownian

x CONTENTS

Motion 283 18-6 Real Gases (Molecular Model) 283 18-7 Liquids and Solids 284 18-8 Molecular Gases; Equipartition of Energy 285 18-9 Thermal Conduction; Transport Phenomena 286 18-10 Molecular Theory Interpretation of the First Law 287 18-11 Molecular Theory and the Second Law 287 18-12 Molecular Theory and Entropy 288 18-13 Summary 289 Problems 290

19. THE ELECTROSTATIC FORCE

19-1 Introduction 292 19-2 Some Properties of the Electric Charge 293 19-3 The Coulomb Law for Point Charges 294 19-4 Units 295 19-5 Superposition. Charge Dispositions 296 19-6 Summary 297 Problems 298

20. THE ELECTROSTATIC FIELD

20-1 Introduction **300** 20-2 Definition of the Electric Field **300** 20-3 Electric Field Due to Arbitrary Charge Distributions **301** 20-4 Electric Lines of Force **304** 20-5 The Gauss Theorem **306** 20-6 Metals in Electrostatics **313** 20-7 Induced Charges on Conductors **314** 20-8 Surface and Volume Integrals **316** 20-9 Summary **317** Problems **318**

21. THE ELECTROSTATIC POTENTIAL AND ENERGY

21-1 Introduction and Definitions 323 21-2 Electrostatic Potential 323 21-3 Potential Due to a Point Charge 325 21-4 Potential Due to a Charge Distribution 326 21-5 Equipotentials and Lines of Force 327 21-6 Conductors and Potential 329 21-7 Electric Capacitors 330 21-8 Energy in Systems of Charged Conductors 332 21-9 The Energy of an Arbitrary Distribution of Electric Charge 334 21-10 Production of Electrostatic Potential Differences Directly by Mechanical Work 337 21-11 Summary 339 Problems 340

22. ELECTRIC CURRENT

22-1 Introduction 345 22-2 Measurement of Electric Current 346 22-3 An Elementary Electric Circuit 347 22-4 Ohm's Law 348 22-5 Production of Potential Differences 350 22-6 Potential Differences in Electric Circuits 351 22-7 Kirchhoff's Laws 355 22-8 Graphical Representation 357 22-9 Energy and Power in Electrical Circuits 360 22-10 Summary 361 Problems 363

23. THE MAGNETIC FIELD

23-1 Introduction **368** 23-2 The Magnetic Field Defined **369** 23-3 Magnetic Flux **372** 23-4 Motion of a Particle in a Constant Magnetic Field **372** 23-5 Motion in Magnetic and Electric Fields (Measurement of q/m) **376** 23-6 Force on a Current-Carrying Wire **378** 23-7 Energy Interchanges **379** 23-8 Force and Torque on a Current Loop **380** 23-9 Motion of a Current Loop (Meters and Motors) **382** 23-10 Summary **383** Problems **385**

24. PRODUCTION OF MAGNETIC FIELDS

24-1 Introduction 38824-2 The Law of Biot and Savart 38924-3 Definition of theAmpere of Current 39024-4 Force Between Currents in General 39224-5 Wires of

Finite Cross Section **392** 24-6 Fields and Forces for Individual Moving Charges **392** 24-7 Ampere's Law for the Magnetic Field **395** 24-8 Magnetism Due to Atoms **398** 24-9 Magnetic Field Maps **399** 24-10 Summary **400** Problems **401**

25. ELECTROMAGNETIC INDUCTION

25-1 Introduction 405 25-2 The Inductive Approach 405 25-3 The Deductive Approach to Electromagnetic Induction 407 25-4 Mechanical-Electrical Energy Interchange 411 25-5 Time-Varying Source of Field 413 25-6 Self-Inductance 416 25-7 Circuits with Self-Inductance 418 25-8 Energy in the Magnetic Field 418 25-9 Mutual Inductance 419 25-10 Circuits with Self-Inductance and Capacitance 419 25-11 Maxwell's Equations 420 25-12 Summary 423 Problems 424

26. ONE-DIMENSIONAL WAVE PROPAGATION

26-1 Introduction 428 26-2 Wave Velocity in a String 428 26-3 Wave Equation for Transverse Waves in a String 430 26-4 Wave Velocity 432 26-5 Other Types of 26-6 Wave Form; Monochromatic Waves 434 26-7 The Superposition Waves 433 of Waves of the Same Frequency 438 26-8 The Superposition of Waves of Different 26-9 Complex Waves 441 26-10 Dispersion and Group Velocity Frequencies 440 26-13 Energy 26-11 Polarization 445 26-12 Reflection and Transmission 446 443 Flow in Wave Motion 447 26-14 Summary 448 Problems 450

27. ELECTROMAGNETIC WAVES (LIGHT)

27-1 Introduction **453** 27-2 Electromagnetic Radiation: Classical Theory and Experiments **453** 27-3 Propagation of Waves in Three Dimensions **463** 27-4 Huygens' Principle **465** 27-5 Reflection **467** 27-6 Refraction **468** 27-7 Velocity of Light **471** 27-8 Geometrical Optics **472** 27-9 Interference **479** 27-10 Diffraction **481** 27-11 Detailed Analysis of Single-Slit Diffraction **488** 27-12 Double-Slit Diffraction **491** 27-13 Diffraction by Circular Apertures: Images **492** 27-14 Summary **493** Problems **496**

28. OPTICAL INSTRUMENTS

28-1 Introduction 500 28-2 The Single Lens; Real Image 500 28-3 The Single Lens; Virtual Images 501 28-4 The Telescope 503 28-5 The Microscope 505 28-6 Resolving Power of a Telescope 505 28-7 Resolving Power of a Microscope 507 28-8 Useful Magnification 508 28-9 Summary 509 Problems 509

29. CONSTITUENTS OF THE ATOM

29-1 Introduction 511 29-2 The Structure of Matter 511 29-3 The Electron 512 29-4 The Ionic Charge 514 29-5 Atomic Mass 515 29-6 Isotopes 516 29-7 The Wave Nature of Cathode Rays 517 29-8 Birth of the Quantum Theory: Electromagnetic Radiation from Hot Solids or Liquids 521 29-9 The Photoelectric Effect 522 29-10 The Compton Effect 524 29-11 Atomic Constitution and Dimensions 526 29-12 The Neutron 529 29-13 Summary 530 Problems 531

xii CONTENTS

30. ATOMIC PHYSICS: THE STRUCTURE OF THE ATOM (QUANTUM MECHANICS)

30-1 Introduction 534 30-2 Atomic Spectra 534 30-3 The Bohr Model of Hydrogen 537 30-4 Energy-Level Diagram 542 30-5 The Correspondence Principle 544 30-6 Franck and Hertz Experiment 545 30-7 Failure of the Bohr Model 545 30-8 Magnetic Properties of Atoms; Electron Spin 546 30-9 Stern-Gerlach Experiment 548 30-10 Summary 550 Problems 551

31. WAVE MECHANICS

31-1 Introduction 553 31-2 Wave-Photon Duality; Probability 553 31-3 Particle-Wave Duality; Probability 555 .31-4 The Uncertainty Principle 555 31-5 The Schrödinger Wave Equation 558 31-6 Stationary Energy States; Particle in a Box 562 31-7 Penetration of Barriers 563 31-8 One-Dimensional Harmonic Oscillator 565 31-9 Atomic Hydrogen 566 31-10 Multielectron Atoms; The Pauli Exclusion Principle 570 31-11 The Periodic Table 570 31-12 Summary 571 Problems 573

32. THE NUCLEUS

32-2 General Properties of the Nucleus 579 32-1 Introduction 575 32-3 Spin 580 32–5 Electron-Binding Energy 580 32–4 Magnetic Moment 580 32-6 Discovery of the Neutron 582 32–7 The Nuclear Radius 583 32–8 Nuclear Radiation 584 32 - 9Nuclear Binding Energy 588 32-10 Stability of the Isotopes 590 32-11 Structure of 32–12 Elementary Particles 596 32–13 Summary 599 the Deuteron **593** Problems 601

APPENDIX

Trigonometry 603 Greek Alphabet 603 Periodic Table of the Elements 604 Natural Trigonometric Functions 605 Conversion Factors 606 Fundamental Constants 607 Common Logarithms 608 Isotopes 610

ANSWERS TO ODD-NUMBERED PROBLEMS 613

INDEX 622