531.01517 YEH

٠

٠

Contents

Preface	v
Chapter 1. Vector Algebra	1
1-1. Scalars and Vectors.	1
1-2. Geometrical Representations of Vectors	2
1-3. Equality of Vectors.	3
1-4. Product of a Vector and Scalar	3
1-5. Addition and Subtraction of Vectors	3
1-6. Unit Vectors	5
1-7. Components of a Vector	6
1-8. Addition of Vectors by the Method of Components	7
Problems.	9
Chapter 2. Newton's Laws; Concurrent Force Systems; Equilibrium	m of
a Particle	12
2-1. Newton's Laws	12
2-2. Discussion of Newton's Laws	13
2-3. Statics and the Equations of Equilibrium of a Particle	15
2-4. Simple Structures	17
2-5. Friction	21
2-6. Procedure of Solving Problems in Statics of a Particle.	24
Problems.	25
Chapter 3. Vector Products	29
3-1. Introduction	29
3-2. Scalar Product	29
3-3. Vector Product	33
3-4. Physical Significance of Scalar Product: Work: Line Integrals	36
3-5. Physical Significance of Vector Product: Moment	39
3-6. Moment of a Vector	43
3-7. Velocity Due to Rotation: Angular-velocity Vector	45
3-8. Triple Vector Products.	46
Problems.	49
ix	\$

x Contents

Chapter 4. Statics of Systems of Particles and of Rigid Bodies .			52
4-1. Equilibrium of a System of Particles			52
4-2. Constraint of a Rigid Body in Space			54
4-3. Equilibrium of a Rigid Body in Space			56
4-4. Procedures of Solving Problems in Statics of Rigid Bodies			57
4-5. Examples of Statics of Rigid Bodies			60
4-6. Couple			65
4-7. Equipollence of Force Systems in Space			66
4-8. Reduction of Force Systems; Wrench			68
Problems.			72
Chapter 5. More Applications of Statics			77
5.1. Sustains of Decellal Econom			77
5-1. Systems of Parallel Forces.	•	·	- 11
5-2. Center of Gravity; Center of Mass; Centroid	•	·	- 19 - 05
5-5. ressure in a Static Fluid	•	•	00
5-4. Forces Due to Fluid Static Pressure: Flane Surfaces	·	•	04
5-5. Forces Due to Fluid Static ressure: Curved Surfaces.	·	•	94 0e
Drobleme	•	•	90
	•	·	99
Chapter 6. Derivatives of Vectors; Kinematics of a Particle	•		104
6-1. Derivative of a Vector			104
6-2. Derivative of Sums and Products.			105
6-3. Curves in Space: Principal Normals and Binormals			107
6-4. Displacement, Velocity, and Acceleration of a Particle			110
6-5. Kinematics of a Particle: Rectangular Coordinates			111
6-6. Kinematics of a Particle: Tangential and Normal Components			113
6-7. Kinematics of a Particle: Cylindrical Coordinates			114
6-8. Kinematics of a Particle: Spherical Coordinates			116
Problems.			119
Chapter 7. Kinematics of a Rigid Body: Relative Motions			123
	•	•	
7-1. Displacements of a Rigid Body	·	•	123
7-2. Kinematics of a Rigid Body	•	•	126
7-3. The Eulerian Angles	•	• •	131
7-4. Motion of a Point of a Rigid Body	•	•	133
7-5. Four-bar Linkages	·	•	136
7-6. Rate of Change of a Vector in a Moving Frame	•	•	139
7-7. Motion Referred to a Moving Coordinate System	•	•	141
Problems.	·	• •	147
Chapter 8. Dynamics of a Particle		., J	153
8-1. General Considerations			153
8-2 Simple Harmonic Motion	•		157
8-3. Motion in a Resisting Medium	•	• •	161
8-4. Central Forces: Planetary and Satellite Motions			162
8-5. Example: Satellite Orbits			167
8-6. Work and Kinetic Energy			170
8-7. Potential Energy		. 1	171
8-8. Examples of Conservative Force Fields: Gravitation		. 1	173
8-9. Example: The Simple Pendulum		. 1	176
	-		-

Contents xi

8- 10.	Motion of a Particle in a Moving Coordinate System . Problems.		•	•	 	181 184
Chapt	er 9. Vibrating Systems					188
0_1	Caparalized Coordinates and Degrees of Freedom					199
9-1. 0_9	Vibrations	·	·	•	• •	180
9_3	Differential Equations of One-degree-of-freedom Vibratio	• • • •	Svet	ame	•	101
0.4	Free Vibrations without Damping	ug i	Gysi	ems	•	102
05	Free Vibrations with Damping	•	·	·	•	107
9-0. 0.6	The Case of Negligible Mass: The Differential Equation		÷	•		. 197
9-0.	The Case of Negligible wass; The Differential Equation	$\boldsymbol{\tau} \boldsymbol{x}$	+ :	x =	0	. 200
9-7.	Forced Vibrations without Damping.	•	·	·	·	. 202
9-8.	Vibration Instations with Viscous Damping	·	·	·	•	. 207
9-9.	Wibration Isolation	·	·	٠	·	. 210
9-10.	Torsional Vibration	·	·	·	·	. 213
9-11.	Vibrations with Nonperiodic Forces	·	·	·	·	. 214
9-12.	More Complicated Vibrating Systems; Nonlinear Vibrat	ion	s .	·	•	. 215
	Problems	·	·	·	•	219
Chant	er 10. Dynamics of Systems of Particles					993
		•	•	•	•	. 220
10-1.	Motion of the Mass Center	·	·	·	•	. 223
10-2.	Impulse and Momentum of a System of Particles .		·	·	•	. 224
10-3.	Angular Momentum of a System of Particles		•	•	·	. 227
10-4.	Systems with Variable Mass; Rocket and Jet Propulsion	ι.	•	•	•	. 233
10-5.	Kinetic Energy of a System of Particles	•	·		•	. 236
10-6.	The Virial Theorem		•			. 238
10-7.	Elementary Kinetic Theory of Gases				•	. 238
10-8.	Viscosity of a Gas					. 241
10-9.	Statistical Mechanics					. 244
	Problems					. 245
Chap	ter 11. Moments and Products of Inertia					. 249
11 1	Introduction and Definitions					940
11-1.	Therefore and Definitions	•	•	•	•	. 249
11-2.	Memoria and Dreducts of Inastic of Source Simula Dedi-	•	•	·	•	. 202
11-0.	Detetion of Gradinate Assa	s .	•	•	•	. 200
11-4.	Rotation of Coordinate Axes	·	·	•	·	. 256
11-5.	Orthogonal Transformations	· • •	÷	•	•	. 258
11-6.	Moments and Products of Inertia with Respect to Rota	ted	Co	ordii	lates	s 260
11-7.	Cauchy's Inertia Ellipsoid	·	•	·	•	. 262
11-8.	Principal Moments of Inertia and Principal Axes	·	·	·	•	263
11-9.	Plane Rotation of Axes; Mohr's-circle Representation.	·	·	•	•	. 268
	Problems	•	•	·	•	. 274
Chap	ter 12. Dynamics of Rigid Bodies					. 277
12-1.	Euler's Equations of Motion of a Rigid Body					277
12-2	Work-and-energy Equation of a Rigid Body	•	•	•	•	282
12-2.	Example: Motion of an Air-borne Vehicle	•	·	·	•	286 286
12-0.	Stability of the Rotational Motion of a Rigid Rody	·	•	·	•	. 200 900
12-4. 19 ¤	Types of Motion of a Rigid Rody	·	·	·	•	. 290 902
14-0. 19 £	Digid Body under No Forece, Deinset's Depresentation	·	•	ż	·	. 290
12-0.	Fine Motion of a Summatrial Concession	•	·	•	·	. 294
12-7.	Free Motion of a Symmetrical Gyroscope	٠	·	٠	·	. 298
12-8.	symmetrical Gyroscope under External Moments	·	·	•	·	. 303
1.2-9	LDP LTVFOCOMDASS					307

xii Contents

٠

12-10.	Rigid Body in Translation							•	310
12-11.	Rotation about a Fixed Axis; Dynamic Balancing.			•					311
12-12.	Plane Motion of a Rigid Body								316
	Problems			•	•	•			319
Cha	er 13. Lagrange's Equations								326
13-1.	Introduction						-		326
13-2.	Virtual Displacements; Stability of Equilibrium .								328
13-3.	Lagrange's Equation for a Particle								333
13-4.	Lagrange's Equation for a System of Particles								338
13-5.	Small Free Vibrations of Coupled Systems			•					340
13-6.	Small Vibrations of Two-degree-of-freedom Systems	s.							342
13-7.	Free and Forced Vibrations of n-degree-of-freedo	m	Sys	sten	ns;	No	orm	al	
	Coordinates			•					346
	Problems			•	•	•		•	356
Аррет	dix A. Properties of Plane Geometric Shapes			•					A1
Apper	dix B. Properties of Solid Homogeneous Bodies .								A5
Answe	rs to Selected Problems		•						A9

.