532.51 YAH

•

Contents

		Ŷ
Pre	eface	
	PART I	
1.	Definitions and Basic Relations	1-32
2.	The Energy Equation	33-50
	2.1 Energy equation for a non-flow process 33	
	2.2 Energy equation for a flow process 34	
	2.3 The adiabatic energy equation 35	
	2.4 Stagnation velocity of sound 36	
	2.5 Stagnation pressure 37	
	2.6 Stagnation density 37	
	2.7 Stagnation state 37	
	2.8 Various regions of flow 37	
	2.9 Reference velocities 39	
	2.10 Bernoulli equation 43	
	2.11 Effect of Mach number on compressibility 44	
3.	Rate Equations for a Control Volume	51- 59
	3.1 Continuity equation (conservation of mass) 51	
	3.2 Momentum equation (conservation of momentum) 53	
	3.3 Moment of momentum equation 55	
	3.4 Energy equation (conservation of energy) 56	
	3.5 Entropy equation 57	
4.	Isentropic Flow with Variable Area	60-88
	4.1 Comparison of isentropic and adiabatic processes 60	
	4.2 Mach number variation 63	
	4.3 Stagnation and critical states 66	
	4.4 Area ratio as function of Mach number 68	
	4.5 Impulse function (F) 69	
	4.6 Mass flow rate 71	

- 4.7 Flow through nozzles 75
- 4.8 Flow through diffusers 80
- 4.9 Use of gas tables 81

5. Wave Motion

- 5.1 Wave propagation in an elastic solid medium 89
- 5.2 Propagation of infinitesimal waves (Sound waves) 90
- 5.3 Non-steep finite pressure waves 99
- 5.4 Steep finite pressure waves 103
- 5.5 Expansion waves 109

6. Flow with Normal Shock Waves

- 6.1 Development of a shock wave 117
- 6.2 Rarefaction waves 119
- 6.3 The governing equations 120
- 6.4 Prandtl-Meyer relation 123
- 6.5 Mach number downstream of the normal shock wave 124
- 6.6 Static pressure ratio across the shock 125
- 6.7 Temperature ratio across the shock 126
- 6.8 Density ratio across the shock (the Rankine-Hugoniot equations) 127
- 6.9 Stagnation pressure ratio across the shock 129
- 6.10 Change in entropy across the shock 130
- 6.11 Impossibility of a shock in subsonic flow 132
- 6.12 Strength of a shock wave 133
- 6.13 Determination of Mach number of supersonic flows 134
- 6.14 Tables and charts for normal shock waves 136
- 6.15 Supersonic wind tunnels 136
- 6.16 Moving normal shock waves 141

7. Flow with Oblique Shock Waves

- 7.1 Nature of flow through oblique shock waves 156
- 7.2 Fundamental Relations 158
- 7.3 Prandtl's equation 161
- 7.4 Rankine-Hugoniot Equation 162
- 7.5 Variation of flow parameters 163
- 7.6 Oblique shock relations from the normal shock equations 168
- 77 Mach waves 169
- 7.8 Gas tables for oblique shocks 170
- 7.9 Charts for oblique shocks 171
- 7.10 The shock polar diagram 174
- 7.11 Expansion of supersonic flow 181

154-192

117-153

89-116

8.	Flow 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	in Constant Area Ducts with Friction The Fanno curves 193 Fanno flow equations 196 Solution of Fanno flow equations 199 Variation of flow properties 201 Variation of Mach number with duct length 204 Tables for Fanno flow 205 Charts for Fanno flow 205 Isothermal flow with friction 207	193-223
9.	Flow 9.1 9.2 9.3 9.4 9.5 9.6 9.7	in Constant Area Ducts with Heat Transfer The Rayleigh line 224 Fundamental equations 229 Rayleigh flow relations 231 Variation of flow properties 233 Maximum heat transfer 234 Tables for Rayleigh flow 236 Charts for Rayleigh flow 236	224 -242
10.	Mult 10.1 10.2 10.3 10.4	PART II tidimensional Flow Cartesian coordinate system 245 Cylindrical Coordinate system 255 Potential function 267 Stream function 272	245-279
11.	Met 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10	thods of Measurement Pressure measurement 280 Temperature 286 Density 291 Velocity 291 Hot-wire anemometer 295 Direction of flow 299 Flow rate 301 Wind tunnels 309 Flow visualization 320 O Optical methods 321	280-334
Ap	pendi	ces	335
Bi	bliogra	aphy	351
Ing	lex		353

٠