Contents

Preface Introduction Abbreviations

I Descartes' Theory of Explanation and the Foundations of his Theory of Light

1. The position expressed in the Dioptric and the Discourse: arguing from suppositions, p. 17; discussion with Morin, p. 20; limitation of proof in physics, p. 22, 2. Metaphysical foundations of physics, p. 24. 3. The role of analogies: in the Dioptric and Le Monde on Fraité de la Lumière, p. 27, in the Regulae, p. 29; Curtestian analysis and Baconian induction, p. 30. 4. The role of natural history: Descartes and Bacon, p. 33. 5. The deductive procedure, p. 37; 'venir au-devant des causes par les effets': the role of experiment, p. 38; conjectural explanation; absolute and moral certainties, p. 41. 6. Conclusion, p. 44

II Descartes' Doctrine of the Instantaneous Propagation of Light and his Explanation of the Rainbow and of Colours

1. The doctrine of the instantaneous propagation of light before Descartes, p. 46; place of the doctrine of instantaneous propagation in Descartes' system of physics, p. 48; the doctrine as expounded in the *Traité de la Lumière*: the cosmological fable, p. 50; the laws of nature and their cosmological application, p. 51; instantaneous propagation and the Cartesian concept of matter, p. 55; Descartes' argument from lunar eclipses, p. 57; the crossing of light rays, p. 59. 2. Theory of colours and the rainbow: birth of the *Meteors*, p. 60; experimental character of Descartes' investigations: explanation of the rainbow, p. 62; mechanical explanation of colours, p. 65

III Descartes' Explanation of Reflection. Fermat's Objections

r. Explanation of reflection before Descartes: in antiquity, p. 69; by Ibn al-Haytham, p. 72; by Roger Bacon, 46

69

CONTENTS

p. 76, and Kepler, p. 78. 2. Descartes' explanation in the *Dioptric*: the ball analogy, p. 78; denial of *quies media* and of elasticity, p. 80; kinematical derivation of the law of reflection, p. 82. 3. The controversy with Fermat, p. 85; Fermat's objection against Descartes' use of the parallelogram method, p. 87; Descartes' reply, p. 89

IV Descartes' Explanation of Refraction. Fermat's 'Refutations'

1. Explanation of refraction before Descartes: Ptolemy, p. 93; Ibn al-Haytham, p. 93; Roger Bacon, Witelo and Kepler, p. 98. 2. Discovery of the law charefraction: Descartes and Snell, p. 99. 3. Descartes' treatment of refraction: in the *Cogitationes privatae* (1619–21), p. 105; in the *Dioptric*, p. 107. 4. Analysis of the Cartesian treatment: derivation of the refraction law, p. 110; physical interpretation of Descartes' assumptions, p. 112. 5. The controversy with Fermat over refraction: Fermat's statement of 1664, p. 116; Fermat and Descartes' distinction between 'force' and 'determination' of motion, p. 117; Fermat's 'refutation' of Descartes' proof of the refraction law, p. 121. 6. Fermat and Clerselier: the mathematical problem, p. 127; Clerselier's collision model, p. 133

V Fermat's Principle of Least Time

1. Introductory, p. 136. 2. La Chambre, Fermat and the principle of economy, p. 137; Fermat's interpretation of the principle as a principle of least time, p. 139. 3. Fermat's method of maxima and minima, p. 144; his Analysis for Refractions, p. 145; Fermat, Leibniz and Descartes, p. 147. 4. Fermat's Synthesis for Refractions, p. 150. 5. Conclusion, p. 154

VI Huygens' Cartesianism and his Theory of Conjectural Explanation

1. Mechanical explanation as the aim of physical science: Huygens' dispute with Roberval over the cause of gravity, p. 159; Huygens' Cartesianism, p. 163; Huygens and Newton, p. 164. 2. Conjectures *versus* induction: Huygens and Bacon, p. 170; Baconian induction, p. 175; Huygens' position in the *Traité de la Lumière*, p. 181 136

93

VII Two Precursors of Huygens' Wave Theory: Hooke and Pardies

1. Introductory: the formation of Huygens' theory and preceding achievements in optics, p. 185. **2.** Hooke's investigations in the *Micrographia*, p. 187; his explanation of the refraction of waves, p. 192. **3.** Pardies' wave hypothesis and Ango's *L'optique*, p. 195

VIII Huygens' Wave Theory

1. Huygens and the 'difficulties' in Descartes' theory of light: Projet du Contenu de la Dioptrique (1673), p. 198, Huygens and Roemer, p. 202, the crossing of light rays, p. 207. 2. Mathematization of the Cartesian picture: Huygens' principle of secondary waves and his explanation of rectilinear propagation, p. 212; E. Mach and the origin of Huygens' principle, p. 215. 3. Huygens' construction for ordinary refraction, p. 216; derivation of Fermat's principle, p. 218; total and partial reflections, p. 219. 4. Explanation of double refraction: Huygens and Bartholinus, p. 221; Huygens' researches, p. 223; Newton and double refraction, p. 226. 5. Conclusion, p. 229

IX Newton's Theory of Light and Colours, 1672

1. Introductory, p. 231. 2. Analysis of Newton's 1672 paper to the Royal Society: the geometrical problem of dispersion, p. 234; the *experimentum crucis* and the doctrine of white light, p. 239. 3. The historicity of the 1672 account, p. 244; Newton's inductive argument, p. 248

X Three Critics of Newton's Theory: Hooke, Pardies, Huygens

1. Hooke's 'Considerations': his general attitude to Newton's theory, p. 251; his explanation of the generation of colours by refraction in the *Micrographia*, p. 254; his idea that white light might be represented by the 'coalescence' of vibrations or waves, p. 259; his insistence (in 1672) on his dualistic theory of colours, p. 261. 2. Pardies' suggestions: his difficulties in understanding Newton's experiments, and his final acceptance of the unequal refractions of colours, p. 264. 3. Huygens' reservations: his demand for a mechanical explanation of colours, and his final acceptance of their differential refrangibility, p. 268 185

198

231

CONTENTS

XI Newton's Dogmatism and the Representation of White Light

1. Newton's general strategy with his critics, p. 273. 2. White light as a heterogeneous mixture—Newton and Hooke, p. 276. 3. Newton's empirical dogmatism and the use of hypotheses, p. 284; his *a priori* conception of rays as discrete entities, p. 287. 4. Colours as qualities of the rays and Huygens' demand for a mechanical explanation, p. 290. 5. Newton's atomism and his interpretation of the *experimentum crucis*, p. 294

XII The Two Levels of Explanation: Newton's Theory of Refraction

Introductory, p. 298. I. Dynamical explanation of refraction—Newton and Descartes, p. 299; Newton's demonstration of the refraction law in the *Principia*, p. 302, in the *Opticks*, p. 304. 2. Hypothetical explanation of refraction in terms of impulsion, p. 308, in terms of attraction, p. 311; logical status of Newton's dynamical explanation, p. 313; the role of Foucault's experiment, p. 315

XIII The Two Levels of Explanation: Newton's Theory of the Colours of Thin Plates

Introductory: the problem of partial reflection, p. 319. I. Hooke and the colours of thin plates: Boyle and Hooke, p. 321; Hooke's researches in the *Micrographia*, p. 322; Hooke and Newton, p. 327. 2. Newton's quantitative approach, p. 331; his theory of 'fits', p. 334; his explanation of partial reflection, p. 336; logical status of the theory, p. 337; alternative hypothetical explanations of the 'fits', p. 338

Bibliography

Index

273

298

343