535 SUP

Contents

Chapter 1	Introduction	1
1.1	Light-induced Processes in Everyday Life	1
	1.1.1 Photodegradation Processes: The 'Negative'	
	Actions of Light	2
	1.1.2 Imaging Processes	3
1.2	General Features of Photochemical and	
	Photophysical Processes	3
	1.2.1 The Pathways of 'Dark' Reactions and	
	Photochemical Reactions	4
	1.2.2 The Mistaken Concept of 'Catalysis' by Light	5
	1.2.3 The Range of Photochemical Reactions:	
	Vibrational Photochemistry and Radiation	
	Chemistry	6
	1.2.4 Chemical Effects of Ionizing Radiation	8
Chapter 2	Light and Matter	11
2.1	Electromagnetic Radiation	11
	2.1.1 Energy, Frequency, Wavelength and Velocity	
	of Electromagnetic Radiation	12
	2.1.2 The Photoelectric Effect	13
	2.1.3 Compton Scattering	14
	2.1.4 Photon Mass, Photon Spin and Momenta	15
2.2	Matter: Molecules and Atoms, Nuclei and Electrons	16
	2.2.1 The Planetary Model of the Atom: Orbits and	10
	Orbitals	16
	2.2.2 Wavefunctions and Operators: The	
	Schrödinger Equation	17
	2.2.3 The Principle of Exclusion and The	
	Uncertainty Principle	20
2.3	The Interaction of Light With Matter	22
	2.3.1 Transition Moments	23
	2.3.2 Electro-optical Phenomena	24
Chapter 3	The Energy of Light: Excited Molecules	27
3.1	Orbitals and States	27
	3.1.1 Excited States of Atoms and Atomic Spectra	27
	3.1.2 Atomic Absorption and Emission Spectra	28
		-0

	3.1.3 Real Atomic Spectra: Broadening of	
	Absorption and Emission Lines	30
3.2	Excited States of Molecules	30
	3.2.1 Diatomic Molecules	30
	3.2.2 Polyatomic Molecules	40
	3.2.3 Linear Conjugated Molecules: The Polyenes	42
	3.2.4 Cyclic Conjugated Systems: Aromatic	
	Molecules	43
3.3	Charge Transfer in Excited States; 'TICT' States	46
	3.3.1 Charge Transfer States in Organic Molecules	47
	3.3.2 Twisted Intramolecular Charge Transfer	
	States	49
3.4	Transitions Between Energy States	49
	3.4.1 Thermal Population of Electronically Excited	
	States	51
	3.4.2 Radiative Transitions	51
	3.4.3 Non-radiative Transitions	62
3.5	Quenching of Excited States	65
	3.5.1 Energy Transfer	66
	3.5.2 Quenching by Electron Transfer	68
	3.5.3 The Heavy Atom Effect	68
	3.5.4 Paramagnetic Quenching	69
	3.5.5 Concentration Quenching	70
	3.5.6 Static and Dynamic Quenching	70
3.6	Energy Levels in Solids	73
	3.6.1 Fermi Levels; Doped Semiconductors	74
3.7	The Physical Properties of Excited Molecules	74
	3.7.1 Geometrical Changes in Excited States	75
	3.7.2 Electron Distributions and Polarizabilities	76
3.8	The Effect of the Environment on the Energy States	
	of Molecules	77
	3.8.1 Non-specific Electrostatic Interactions	77
	3.8.2 Specific Solute-Solvent Associations	79
	3.8.3 Solvatochromic and Thermochromic Shifts	79
	3.8.4 Ion Solvation: The Born Equation	84
Chapter 4	The Chemistry of Excited Molecules	87
4.1	'Dark' Chemistry and Light-induced Chemistry	87
	4.1.1 Pathways of Dark and Light-induced	
	Chemical Reactions	88
	4.1.2 Adiabatic and Non-adiabatic Processes: the	
	Role of the Energy of Excited States	89
	4.1.3 Is There a Temperature Effect in	
	Photochemical Reactions?	91
	4.1.4 Monophotonic and Multiphotonic Processes	91

,

Contents

	4.1.5 Primary and Secondary Photochemical	
	Processes	92
	4.1.6 Kinetics of Photochemical Reactions	94
4.2	Photoionization, Light-induced Electron Capture	
	and Electron Transfer Reactions	95
	4.2.1 Intramolecular and Intermolecular Electron	
	Transfer	97
	4.2.2 The 'Marcus-Hush' Model of Electron	
	Transfer	101
4.3	Electronically Excited Super Molecules: Excimers	
	and Exciplexes	104
4.4	Organic Photochemistry	110
	4.4.1 The Mechanisms of Photochemical Reactions:	
	Quenching, Sensitization and Wavelength	
	Effects	111
	4.4.2 Unimolecular Reactions	113
	4.4.3 Protolytic Equilibria (Acid-Base Reactions)	126
	4.4.4 Bimolecular Reactions	130
4.5	Photoelectrochemistry	140
	4.5.1 Reactions at Electronically Excited	
	Semiconductor Electrodes	141
4.6	Inorganic Photochemistry	142
	4.6.1 Excited Atom Reactions	143
	4.6.2 Photoinduced Redox Reactions of Ions in	
	Solution	143
	4.6.3 Photophysics and Photochemistry of Metal	
	Complexes	144
4.7	Photochemistry in Solids and Organized Assemblies	151
	4.7.1 Types of Solids	152
	4.7.2 Photochemical Reactions in Glasses	152
	4.7.3 Excitons in Polymers and Crystals	153
	4.7.4 Bimolecular Photochemical Reactions in	
	Solids	153
	4.7.5 Photochemistry in Micelles	154
4.8	Chemiluminescence	155
	4.8.1 Electroluminescence	155
	4.8.2 Chemiluminescence Sensitized by the	
	Decomposition of Cyclic Peroxides	156
	4.8.3 Chemiluminescence of Free Radical Reactions	157
4.9	Reactions of Free Radicals	157
	4.9.1 Resonance Stabilization of Free Radicals	158
	4.9.2 The Reactions of Free Radicals	159
	4.9.3 Magnetic Field Effects in Free Radical	
	Reactions	159
	4.9.4 Excited States of Free Radicals	160
	4.9.5 Photochemical Reactions of Free Radicals	160

.

Chapter 5	Light and Life	163
5.1	Ultraviolet Light in Biology and Medicine	164
5.2	Photosynthesis	165
5.3	Vision and Phototaxis	171
5.4	Photoresponse Mechanisms in Plants and Animals	175
5.5	Photochemical Damage in Living Systems	176
	5.5.1 Photochemistry of Nucleic Acids	177
	5.5.2 Photochemistry of Proteins	180
5.6	Photochemistry in Biosynthesis	181
5.7	Photomedicine	181
	5.7.1 The Repair of Detached Retinas by Laser	
	Welding	182
	5.7.2 Photochemical Effects of VIS and UV Light	182
5.8	Bioluminescence	184
	5.8.1 The Role of Bioluminescence; Its Origins in	
	Evolution	184
Chapter 6	Light in Industry	186
6.1	Photographic Processes	186
	6.1.1 Spectral Sensitization	188
	6.1.2 Colour Photography	190
	6.1.3 'Instant' Photography	191
	6.1.4 Electrophotography: The Photocopying	
	Process	192
6.2	Photopolymerization and Photochemical	
	Degradation of Polymers	193
	6.2.1 Photochemical Curing of Surface Coatings	195
	6.2.2 Chemical Structures of Polymers	195
	6.2.3 Photoinitiation of Polymerization	197
	6.2.4 Photodegradation of Polymers and Protection	
	Methods	198
6.3	Photochemistry in Synthesis	201
	6.3.1 Photochlorination of Polymers	202
	6.3.2 The Synthesis of Caprolactam	202
	6.3.3 The Syntheses of Vitamin D and of 'Rose	
	Oxide	203
	6.3.4 Photochemical Reactors	204
6.4	Photochemistry of Dyes and Pigments	205
6.5	Photochromism	207
6.6	Energy Conversion and Storage	209
	6.6.1 Photoelectrochemical Cells	210
6.7	Atmospheric Pollution and the Ozone Layer	211
	6.7.1 The Ozone Layer; Its Photochemical	
	Formation and Degradation Processes	213
	6.7.2 Time Dependence of Pollutant Concentrations	214

Contents		xiii
Chapter 7	Experimental Techniques	216
- 7.1	Light Sources, Filters and Monochromators	216
	7.1.1 Sunlight, the First Light Source	216
	7.1.2 Incandescent Lamps and Arc Lamps	217
	7.1.3 Some Other Light Sources	218
	7.1.4 Optical Filters	220
	7.1.5 Spectrographs and Monochromators	222
7.2	Lasers	225
	7.2.1 General Principles; Two-, Three- and	
	Four-level Lasers	225
	7.2.2 Solid State Lasers: Ruby and Nd/YAG	226
	7.2.3 Frequency Conversion of Laser Light	228
	7.2.4 Gas Lasers	230
	7.2.5 Dye Lasers	231
	7.2.6 The Properties of Laser Light	232
	7.2.7 'Self-phase' Modulation: White Light from	
	Monochromatic Lasers	233
7.3	Luminescence Measurements	233
	7.3.1 Photoluminescence	234
	7.3.2 Electroluminescence	234
	7.3.3 Chemiluminescence and Bioluminescence	235
	7.3.4 Correction of Emission and Excitation Spectra	235
	7.3.5 Light Detectors	236
	7.3.6 Single Photon Counting	239
	7.3.7 Experimental Conditions for Luminescence	
	Measurements	240
	7.3.8 Luminescence Quantum Yield Measurements	241
7.4	Flash Photolysis	242
	7.4.1 'Conventional' (Microsecond) Flash Photolysis	242
	7.4.2 Nanosecond Laser Flash Photolysis	244
	7.4.3 Luminescence Kinetics; Deconvolution	246
	7.4.4 Time-resolved Spectroscopy	248
	7.4.5 Special Detection Techniques in Flash	
	Photolysis: Photoconductivity, Thermal	
	Lensing, Photoacoustics, etc.	250
7.5	Quantum Yields of Photochemical Reactions:	
	Actinometry	253
	7.5.1 Types of Actinometers	254
Chapter 8	The Frontiers of Photochemistry	256
8.1	Picosecond Flash Photolysis	257
	8.1.1 Spectrographic Picosecond Laser Flash	
	Photolysis	257
	8.1.2 Kinetic Picosecond Laser Flash Photolysis	258
	8.1.3 Sampling Techniques for Repetitive Events	258

	8.1.4 Indirect Optical Methods: Autocorrelation	
	and Up-conversion	259
	8.1.5 Picosecond Light-induced Processes	260
8.2	Femtosecond Flash Photolysis	263
	8.2.1 Femtosecond Detection Methods	264
	8.2.2 Femtosecond Photochemical Processes	266
8.3	Supramolecular Photochemistry	268
8.4	Photochemistry in Molecular Films	271
8.5	Photochemistry in Molecular Beams	274
	8.5.1 Molecular Beam Photoinduced Reactions	276
8.6	Vibrational Photochemistry with Infrared Light	278
8.7	Spectral Hole Burning	280
Appendice	Appendices	
2A	Experimental Measurement of the Photon Spin	283
3A	Relationships Between Emission Rate Constants	
	and Absorption Coefficients	284
3 B	Bandgap Energies of Some Semiconductors	285
7A	Polarizability and Hyperpolarizability	286
7 B	Signal-to-noise Ratio	287
7C	Procedures of Deoxygenation	288
Further Re	ading	289
Subject Index		292