ONTENTS

PREFACE		· . • • • • • • • • • • • • • • • • • • •			
LIST O	F SYM	BOLS	ix		
1	INTR	INTRODUCTION TO THERMOFLUIDS			
		Forms of Energy and Matter 1			
	1.2	Energy Transformation 2			
	1.3	Thermofluid Machinery 3			
	1.4	Analysis of Thermofluid Machines 5			
	1.5	Properties of Working Fluids 8			
	1.6	Thermofluid Technology 9			
	ENTF	ROPY AND THE SECOND LAW OF THERMODYNAMICS	13		
	2.1	Heat Engines 13			
	2.2	Second Law of Thermodynamics 15			
	2.3	Concept of Entropy 16			
	2.4	Reversibility 17			
	2.5	The Clausius Inequality 17			
	2.6	Entropy 18			
	2.7	Change of Entropy for a Perfect Gas 10			
	2.8	Change of Entropy for a Vapour 21			
	2.9	Entropy Balance and Entropy Production 27			
	2.10	The Temperature — Entropy Diagram 31			
	2.11	Efficiency of a Heat Engine 32			
	2.12	Carnot Engine 34			
	2.13	Practical Limitations 38			
3	GAS	POWER ENGINES AND CYCLES	41		
	3.1	Air Standard Cycles 41			
	3.2	Reciprocating Engine Construction and Operating Principles	42		
	3.3	Arrangement of Cycle of Processes 43			
	3.4	Impracticability of the Carnot Cycle 46			
	3.5	Otto · Cycle 47			
	3.6	Diesel Cycle 53			
	3.7	Dual Combustion Cycle 58			
	3.8	Other Engine Cycles 61			
	3.9	Rotating Engine Construction and Operating Principles 63			
	3.10	Joule Cycle 64			

Contents

ENGINE PERFORMANCE AND TESTING

4

	4.1	Introduction 71			
	4.2	Indicated Power 72			
	4.3	Shaft Power 76			
	4.4	Mechanical Efficiency 79			
	4.5	Mean Piston Speed 80			
	4.6	Air and Fuel Consumption 81			
	4.7	Thermal Efficiency 86			
	4.8	Energy Balance 87			
	4.9	Engine Characteristics 91			
	4 10	Factors Affecting Engine Performance 93			
5	STEAM POWER PLANT				
	5.1	Rankine Cycle 105			
	5.2	Improvements in Rankine Cycle 125			
	5.3	Steam Plant Hardware 134			
	5 4	Performance of Steam Boilers 140			
6	NOZZLES				
	6.1	Nozzles for Incompressible Fluids 146			
	6.2	Nozzles for Compressible Fluids 149			
	6.3	Effects of Back Pressure on the Performance of Nozzles	63		
7	STEAM TURBINES				
	7.1	Impulse Turbine 168			
	7.2	Compounding of Steam Turbines 169			
	7.3	Reaction Turbine 172			
	7.4	Velocity Diagrams 173			

8 AIR COMPRESSORS

7.5

7 6

- 8.1 Compressor Types 181
- 8.2 Reciprocating Compressor vs Turbo-compressor 181

177

8.3 Reciprocating Air Compressors 182

Performance of Steam Turbines

Governing of Steam Turbines

9	MIXT	MIXTURES AND PSYCHROMETRY			
	9.1	Introduction 195			
	9.2				
	9.3	Gravimetric and Volumetric Analysis 200			
	9.4	Molecular Weight, Gas Constant and Specific Heats of Gas Mixtures 202	eous		
	9.5	Adiabatic Mixing of Gases 205			
	9.6	Psychrometric Mixtures and Dewpoint 206			
	9.7	Specific Humidity and Relative Humidity 207			
	9.8	Measurement of Relative Humidity 209			
	9.9	Psychrometric Chart 209			
	9.10	Air Conditioning 211			
	9.11	Cooling Towers 217			
	HEAT	T TRANSFER	225		
	10.1	Modes of Heat Transfer 225			
	10.2	Conduction 226			
	10.3	Convection 242			
	10.4	Combined Conduction and Convection 245			
	10.5	Heat Exchangers 254			
	10.6	Radiation 265			
	LIQU	IID FLOW IN PIPES	273		
		Conservation of Mass and Energy 273			
	11.2				
	11.3	Friction Loss in Pipe Flow 279			
	11.4	Minor Losses in Pipes 282			
	11.5	Energy Gradient and Hydraulic Gradient Lines 290			
	11.6	Pipe Networks 291			
	11.7	Syphon 296			
	FLUI	D MOMENTUM	301		
	12.1	Introduction 301			
	12.2	Impact on a Stationary Flat Plate 302			
	12.3	Impact on a Moving Flat Plate 305			
	12.4	Impact on a Series of Moving Flat Plates 306			
	12.5	Impact on a Stationary Curved Vane 308			
	12.6	Relation Between Absolute and Relative Velocities 311			

vi Contents

12.7	Impact	on a	Series of	Moving	Curved	Vanes	312
4-							

- 12.8 Impulse Water Turbines 317
- 12.9 Other Applications 320

SELECTION OF PUMPS

- 13.1 Classification and Type 323
- 13.2 Reciprocating Pumps 324
- 13.3 Rotary Pumps 329
- 13.4 Centrifugal Pump 330
- 13.5 Pumping System 335
- 13.6 System-Head Curve 339
- 13.7 Limitation on Suction Lift

POLLUTION AND POLLUTION CONTROL

- 14.1 Introduction 353
- 14.2 Air Pollution 353
- 14.3 Water Pollution 366
- 14.4 Noise Pollution 377

GENERAL INFORMATION

ANSWERS

SELECTED REFERENCES

INDEX