CONTENTS

Preface xiii Preface to the First Edition xv System of Units, Symbols, Notation, and Selected Constants xvii

1	INTRO	DUCTION AND DEFINITION OF TERMS	
	1.1	Introduction 1	
	1.2	The Concept of State 1	
	1.3	Simple Equilibrium 4	
	1.4	The Equation of State of an Ideal Gas 5	
	1.5	The Units of Work 8	
	1.6	Extensive and Intensive Properties, Heterogeneous	
		and Homogeneous Systems 9	
	1.7	Phase Diagrams and Thermodynamic Components 9	
2	THE FI	RST LAW OF THERMODYNAMICS	14
	2.1	Introduction 14	
	2.2	The Relationship between Heat and Work 15	
	2.3	Internal Energy and the First Law of	
		Thermodynamics 16	
	2.4	Constant-Volume Processes 20	
	2.5	Constant-Pressure Processes and the Enthalpy H 20	
	2.6	Heat Capacity 21	
	2.7	Reversible Adiabatic Processes 25	
	2.8	Reversible Isothermal Pressure or Volume Changes	
		of an Ideal Gas 27	

	2.9	Summary 27	
	2.10	Numerical Examples 29	
		Problems 34	
3	THE SE	COND LAW OF THERMODYNAMICS	36
	3.1	Introduction 36	
	3.2	Spontaneous, or Natural, Processes 37	
	3.3	Entropy and the Quantification of Irreversibility 38	
	3.4	Reversible Processes 40	
	3.5	An Illustration of Irreversible and Reversible	
		Processes 40	
	3.6	Entropy and Reversible Heat 42	
	3.7	The Reversible Isothermal Compression of an Ideal	
		Gas 46	
	3.8	The Reversible Adiabatic Expansion of an Ideal Gas 47	
	3.9	Summary Statements 48	
	3.10	The Properties of Heat Engines 48	
	3.11	The Thermodynamic Temperature Scale 52	
	3.12	The Second Law of Thermodynamics 55	
	3.13	Maximum Work 57	
	3.14	Entropy and the Criterion of Equilibrium 59	
	3.15	The Combined Statement of the First and Second	
		Laws of Thermodynamics 60	
	3.16	Summary 62	
	3.17	Numerical Examples 63	
		Problems 70	
4	THE ST	ATISTICAL INTERPRETATION OF ENTROPY	72
	4.1	Introduction 72	
	4.2	Entropy and Disorder on an Atomic Scale 72	
	4.3	The Concept of Microstate 74	
	4.4	Determination of the Most Probable Microstate 76	
	4.5	The Effect of Temperature 80	
	4.6	Thermal Equilibrium Within a System and the	
		Boltzmann Equation 82	
	4.7	Heat Flow and the Production of Entropy 83	
	4.8	Configurational Entropy and Thermal Entropy 85	
	4.9	Summary 88	
		Problems 89	
5	AUXILI	ARY FUNCTIONS	91
	5.1	Introduction 91	
	5.2	The Enthalpy H 93	

- 5.3 The Helmholtz Free Energy A 93
- 5.4 The Gibbs Free Energy G 99
- 5.5 Summary of Equations for a Closed System 101
- 5.6 Variation of the Composition and Size of the System 101
- 5.7 The Chemical Potential 102
- 5.8 Thermodynamic Relations 104
- 5.9 Maxwell's Relations 105
- 5.10 The Transformation Formula 107
- 5.11 Example of the Use of the Thermodynamic Relations 108
- 5.12 The Gibbs-Helmholtz Equation 109 Problems 111

6 HEAT CAPACITY, ENTHALPY, ENTROPY, AND THE THIRD LAW OF THERMODYNAMICS

113

155

- 6.1 Introduction 113
- 6.2 Theoretical Calculation of the Heat Capacity 114
- 6.3 Empirical Representation of Heat Capacities 122
- 6.4 Enthalpy as a Function of Temperature and Composition 125
- 6.5 Temperature Dependence of Entropy and the Third Law of Thermodynamics 134
- 6.6 Experimental Verification of the Third Law 138
- 6.7 Enthalpy and Entropy as Functions of Pressure 145
- 6.8 Summary 147
- 6.9 Numerical Examples 148 Problems 152

7 PHASE EQUILIBRIA IN A ONE-COMPONENT SYSTEM

- 7.1 Introduction 155
- 7.2 The Variation of Gibbs Free Energy with Temperature at Constant Pressure 156
- 7.3 The Variation of Gibbs Free Energy with Pressure at Constant Temperature 164
- 7.4 Free Energy as a Function of Temperature and Pressure 164
- 7.5 Equilibrium between the Vapor Phase and a Condensed Phase 167
- 7.6 Graphical Representation of Phase Equilibria in a One-Component System 169
- 7.7 Solid-Solid Equilibria 176

- 7.8 Summary 180
- 7.9 Numerical Examples 182 Problems 186

8 THE BEHAVIOR OF GASES

- 8.1 Introduction 188
- 8.2 The P-V-T Relationships of Gases 188
- 8.3 Deviation from Ideality and Equations of State of Real Gases 192
- 8.4 The van der Waals Gas 193
- 8.5 Other Equations of State for Nonideal Gases 204
- 8.6 The Thermodynamic Properties of Ideal Gases and Mixtures of Ideal Gases 205
- 8.7 The Thermodynamic Treatment of Imperfect Gases 212
- 8.8 Summary 220 Problems 222

9 REACTIONS INVOLVING GASES

- 9.1 Introduction 223
- 9.2 Reaction Equilibrium in a Gas Mixture and the Equilibrium Constant 224
- 9.3 The Effect of Temperature on the Equilibrium Constant 230
- 9.4 The Effect of Pressure on the Equilibrium Constant 232
- 9.5 Reaction Equilibrium as a Compromise between Enthalpy and Entropy Factors 233
- 9.6 Reaction Equilibrium in the System $SO_2(q) - SO_3(q) - O_2(q) = 237$
- 9.7 Equilibrium in H₂O-H₂ and CO₂-CO Mixtures 241
- 9.8 Gaseous Reaction Equilibria and Fugacity 244
- 9.9 Numerical Examples 247
- 9.10 Summary 258 Problems 260

10 REACTIONS INVOLVING PURE CONDENSED PHASES AND A GASEOUS PHASE

- 10.1 Introduction 261
- 10.2 Reaction Equilibrium in a System Containing Condensed Phases and a Gaseous Phase 262

223

261

	10.3	The Variation of Standard Free Energy with	
	10.4	Flincher Diogram 272	
	10.4	Ellingham Diagrams 272	
	10.5	The Effect of Phase Transformation 280	
	10.6	The Oxides of Carbon 286	
	10.7	Graphical Representation of Equilibria in the System Metal-Oxygen-Carbon 295	
	10.8	Summary 300	
	10.9	Numerical Examples 301	
		Problems 316	
11	THE B	EHAVIOR OF SOLUTIONS	319
	11.1	Introduction 319	
	11.2	Raoult's Law and Henry's Law 320	
	11.3	The Thermodynamic Activity of a Component in	
		Solution 324	
	11.4	The Gibbs-Duhem Equation 325	
	11.5	The Free Energy of Solution 328	
	11.6	The Properties of Raoultian Ideal Solutions 332	
	11.7	Nonideal Solutions 338	
	11.8	Application of the Gibbs-Duhem Relationship to	
		Activity Determination 340	
	11.9	Regular Solutions 358	
	11.10	The Quasi-chemical Model of Solutions 366	
	11.11	Summary 373	
		Problems 375	
12	FREE	ENERGY-COMPOSITION AND PHASE DIAGRAMS	
	OF BIN	IARY SYSTEMS	378
	12.1	Introduction 378	
	12.2	Free Energy and Activity 379	
	12.3	The Free Energy of Regular Solutions 382	
	12.4	Criterion of Phase Stability in Regular Systems 384	
	12.5	Liquid and Solid Standard States 388	
	12.6	Phase Diagrams, Free Energy, and Activity 397	
		Problems 408	
13	REACTION EQUILIBRIA IN SYSTEMS CONTAINING		
	COMPO	ONENTS IN CONDENSED SOLUTION	409
	13.1	Introduction 409	
	13.2	Reaction Equilibrium Criteria in Systems Containing	
		Components in Condensed Solution 411	

	13.3	Alternative Standard States 419			
	13.4	The Gibbs Phase Rule 433			
	13.5	Binary Systems Involving Compound Formation 459			
	13.6	The Solubility of Gases in Metals 473			
	13.7	The Formation of Oxide Phases of Variable			
		Composition 480			
	13.8	Graphical Representation of Phase Equilibria 486			
	13.9	Solutions Containing Several Dilute Solutes 489			
	13.10	Tabular Representation of Thermodynamic Data and			
		the Free Energy Function 501			
	13.11	Analysis of Experimental Data by the Second and Third			
		Law Methods 505			
	13.12	Numerical Examples 507			
		Problems 517			
	14 ELECT	ROCHEMISTRY	522		
	14.1	Introduction 522			
	14.2	The Relationship between Chemical and Electrical			
	_	Driving Forces 524			
	14.3	The Effect of Concentration on EMF 528			
	14.4	Formation Cells 530			
	14.5	Concentration Cells 532			
	14.6	The Temperature Coefficient of a Cell 537			
	14.7	Heat Effects 541			
	14.8	The Thermodynamics of Aqueous Solutions 542			
	14.9	Pourbaix Diagrams 555			
	14.10	Summary 573			
	14.11	Numerical Examples 577			
		Problems 581			
Appendix A		THERMODYNAMIC TABLES	585		
Annondix P					
		THERMOCHEMICAL DATA	591		
			001		
RECOMMENDED READING					
ANSWERS			5 97		
	INDEX		607		