537.5 ALF

1

2

•

Contents

	Preface	5
	Fundamental Constants	15
INTRO	duction — The Discovery of the Electron	
$1.1 \\ 1.2$	Historical background J. J. Thomson's determination of e/m for cathode rays	17 17
1.2	Significance of the experiment e_{im} for calloue rays	19
1.5	The scope of electronics	20
1.5	The interplay of science and technology	20
1.6	Electrons and matter	20
	References	21
Elect	RONS IN ATOMS	
2.1	The inadequacy of classical physics	22
2.2	The application of quantum theory	23
2.3	The role of probability—the uncertainty principle	24
2.4	Electromagnetic radiation—a comparison	25
2.5	The wave aspect of matter	26
2.6	The Schrödinger wave equation	27
2.7	Transverse vibrations in strings	28
2.8	The solution of the Schrödinger equation for the	00
0.0	hydrogen atom	30 31
2.9 2.10	Spin Energy levels for hydrogen	31
2.10	Energy levels for hydrogen Complex atoms—general principles	31
	Complex atoms—the building process and the Pauli	52
4.14	principle	33
2.13	Energy levels of complex atoms	35
4.13	References	36
	Problems	36

Force	s between Atoms	
3.1	Introduction	38
3.2	Molecules	38
3.3	The hydrogen molecule	39
3.4	Exchange energy	39
3.5	The instability of the helium 'molecule'	40
	The covalent bond	40
3.7	The ionic bond	40
3.8	The kinetic theory of gases	41
3.9		42
3.10	Transport processes	43
	The Boltzmann distribution	43
3.12	Polyatomic molecules—the principle of equipartition of energy	44
3.13	Electronic and nuclear motion separated	45
	Van der Waals force	45
3.15	The characteristics of crystals	45
	Miller indices	46
3.17	Metals	47
	References	47
	Problems	47
Emiss	ION OF ELECTRONS FROM SOLIDS	
4.1	Historical	49
4.2	Comparison of thermionic emission and evaporation	49
4.3	The work function	50
4.4	Photoemission	50
4.5	Contact difference of potential	51

Contact difference of potential 4.5

4.6	Determination	of	work	function	from	photoelectric	
	threshold						

51

52

52

53

53

55

56

57

57

58

58

59

- 4.7 Photoelectric yield Effect of surface contamination 4.8
- 4.9 The 'vapour pressure' of electrons
- 4.10 The role of the collector
- 4.11 Practical thermionic emitters
- 4.12 Thoriated tungsten
- 4.13 The oxide cathode
- 4.14 The operation of the oxide cathode
- 4.15 The dispenser cathode
- The direct conversion of heat energy to electricity 4.16
- 4.17 Practical photocathodes

8 3

4

	CONTENTS	9
4.18	Secondary electron emission References Problems	59 60 60

5	ELECT	RON OPTICS	
	5.1	Introduction	62
	5.2	The electron beam as a measuring instrument	62
	5.3		63
	5.4	The cathode ray oscillograph—practical requirements	63
	5.5	The deflection of an electron beam by an electric field	64
	5.6	The electron gun	66
	5.7	The role of aperture stops	66
	5.8	High-current beams	67
	5.9	Sensitivity of deflecting plates	68
	5.10	Post-deflection acceleration	69
	5.11	Conditions at the phosphor screen	70
	5.12	0	71
	5.13	The double beam oscillograph	71
	5.14	Damage to the screen	72
	5.15	Magnetic focusing and deflection	72
	5.16	Electron lenses in general	73
	5.17	01	
		microscope	73
		References	75
		Problems	76
6	Тне (Control of Electron Current in a Vacuum—Space	
	CHARC	ge and Velocity Modulation	
	6.1	The planar diode	77
	6.2	Space-charge limited emission in the planar diode	77
	6.3	Limitations of the treatment	79
	6.4	The role of space charge in the diode	80
	6.5	The triode	80
	6.6		81
	6.7	Grid-anode capacitance	82
	6.8	Applications of the triode	82
	6.9	Limitations of the triode	83
	6.10	The tetrode	83
	6.11	The pentode	84
		The variable-mu pentode	84
	6.13	The beam power tetrode	84
	6.14	The behaviour of space-charge controlled valves at	05
		high frequencies	85

Ś

со	N	Т	E	N	т	s
----	---	---	---	---	---	---

6.15	Velocity modulated electron devices-the klystron	86
6.16	The travelling-wave tube	88
6.17	The magnetron	89
	Summary of chapter	90
	References	91
	Problems	91
Elect	RICAL CONDUCTION IN GASES	
7.1	Historical	92
7.2	The gaseous plasma	92
7.3	The key problem—the origin of the gaseous ions	92
7.4	The gas diode	9 3
7.5	Energy balance in a plasma	93
7.6	Ion and electron temperatures in a plasma	94
7.7	The thyratron	95
7.8	The Townsend discharge	96
7.9	Calculation of the current in a Townsend avalanche	97
7.10	The self-sustaining discharge	97
7.11	Paschen's law	98
7.12	The spark discharge	99
7.13	The corona discharge	99
7.14	Time lags in discharges	99
7.15	The effect of space charge on the Townsend discharge	100
7.16	The glow discharge	101
7.17	Cold cathode tubes	101
7.18	The arc discharge	102
7.19	Hot cathode arcs	102
7.20	The mercury arc rectifier	102
7.21	The ignitron	103
7.22	Sodium and mercury vapour lamps	103
	References	104
	Problems	104
C	Program Contractory Program	
	US PLASMA—SOME APPLICATIONS	106
8.1	Scope of the chapter	100
8.2	Magnetohydrodynamic power generation-ionization	106
0.2	in hot gases	
8.3	The MHD effect and its application	107 108
8.4 8.5	Nuclear fusion—the potentialities of nuclear energy	108
8.5 8.6	The release of energy—general considerations	108
8.0 8.7	Application to nuclear energy The nuclear reactor	109
		109
8.8	Nuclear fusion reactions	109

		CONTENTS	11
	8.9	The need for new power resources	110
	8.10		110
	8.11	Feasibility of controlled fusion	111
	8.12	2	112
	8.13		112
	8.14		112
	8.15	The geophysical significance of plasmas	113
		References	114
9	ELECT	RONIC CONDUCTION IN SOLIDS	
	9.1	The recognition of electronic conduction in solids	116
	9.2	The range of observed conductivities	116
	9.3	The scope of the problem	117
	9.4	Restriction to crystals	117
	9.5	Electronic conduction in terms of chemical bonds	117
	9.6	The need for an alternative approach	118
	9.7	A new approach stated	119
	9.8	The Bloch solution of the Schrödinger equation	120
	9.9	The electron in a potential well	120
	9.10	Extension to real crystals—the band theory	124
	9.11	Experimental confirmation of the theory	125
	9.12		126
	9.13	-	127
	9.14	1	127
	9.15	The effective mass	128
		The importance of Ohm's law	129
		The behaviour of real crystals—scattering processes	130
	9.18	5 1 11	
		metals	131
	9.19		
		of insulators	131
		The effect of thermal energy on electron states	132
	9.21		133
		References	135
		Problems	135
10		ONDUCTORS	_
	10.1	A simplified energy scheme for semiconductors	137
	10.2	The positive hole	138
	10.3	Semiconductors—basic principles	139
	10.4	Intrinsic and extrinsic conductivity	140
	10.5	The variation of carrier concentration with temperature	141
	10.6	Purification of semiconductors	143

CONTENTS

	10.7	The growth of single crystals	144
	10.8	Experimental determination of semiconductor para-	
		meters	145
		References	147
		Problems	148
11	Тне р	-n Junction and the Transistor	
	11.1	Semiconductor and vacuum electronics compared	150
	11.2	Contact phenomena—the p-n junction	150
	11.3	Equilibrium in the p-n junction—static approach	151
	11.4	Equilibrium in the p-n junction—dynamic approach	153
	11.5	Analysis of the p-n junction—the assumptions	154
	11.6	The p-n junction under applied voltage	155
	11.7	Breakdown at a p-n junction	156
	11.8	High frequency behaviour of a p-n junction	157
	11.9	The reverse-biased diode as a detector of minority	
		carriers	158
	11.10	The tunnel diode	159
	11.11	Injection ratio of a p-n junction	161
	11.12		161
	11.13		163
	11.14		164
	11.15	Requirements for transistor design	164
	11.16	Operation at high power level and high frequency	165
	11.17	Equivalent circuits of the transistor	166
	11.18	Requirements for transistor materials	166
	11.19	Transistor manufacture	166
		References	167
		Problems	167
12	Magn	etic Properties of Matter	
	12.1	Magnetic effects of electron motion	169
	12.2	Description of magnetic properties-diamagnetism and	
		precession	169
	12.3	Spin and orbital magnetic moment	170
	12.4	Macroscopic effects—paramagnetism	171
	12.5	Magnetic saturation	172
	12.6	Ferromagnetism	173
	12.7	Internal fields in ferromagnetics	173
	12.8	The magnetic domain concept	174
	12.9	Energy balance in a domain	175
	12.10	Domains and the magnetization curve	177
	12.11	Magnetic materials—theory and practice	177

		CONTENTS	13
	1 2 .12	The nature of the internal field	178
		Antiferromagnetism	179
		Ferrimagnetism	179
	12.15	Ferrites	180
		References	181
		Problems	181
13	Diele	CTRIC MATERIALS	
	13.1	Description of dielectric properties	183
	13.2	The limitations of the band theory for dielectrics	183
	13.3	Permanent molecular dipoles	184
	13.4	Induced molecular dipoles	184
	13.5	The Clausius-Misotti equation	185
	13.6	The behaviour of polar molecules	185
	13.7	Dielectrics in alternating fields	186
		Problems	187
14		rical Noise	
	14.1	Is indefinite amplification possible?	189
	14.2	Physical limitations of amplification—noise	189
	14.3	An example—the reflecting galvanometer	190
	14.4	Applications to a tuned circuit	191
	14.5	Frequency spectrum of the fluctuations	191
	14.6	Johnson noise	192
	14.7	Physical nature of Johnson noise	193
	14.8	Shot noise	193
	14.9	Noise reduction by space charge	195
		Partition noise	195
		Flicker noise	196
		Noise in transistors	196
	14.13		196
		References	196
		Problems	196
15		CULAR AMPLIFICATION	
	15.1	Practical limitations imposed by noise	198
	15.2	A new approach—molecular amplification	198
	15.3	Lifetime of excited electronic states	198
	15.4	Spontaneous and stimulated emission	199
	15.5	Stimulated emission as photon amplification	200
	15.6	Condition for amplification—population inversion	200
	15.7	The ammonia maser	200
	15.8	The three level maser	201

.

CONTENTS

15.9	Coherence of molecular amplification	202
15.10	Extension to optical frequences-the laser	202
15.11	The ruby laser	203
15.12	The gas laser	203
15.13	The semiconductor junction laser	203
	Applications of the laser	203
	References	204
Periodic Table of the Elements		205
Gener	al Bibliography	207
NOTES AND SOLUTIONS TO PROBLEMS		209
INDEX		213

14

*