Contents

49

Pure Substances 2	
Definitions: Operational and Theoretical 3	
Separation of Mixtures into Pure Substances 3	
Elements and Compounds 4	
Chemical Changes and Physical Changes 6	
Why Study Pure Substances and Their Chemical Changes? 8	
The Structure of Matter Explains Chemical and Physical Properties	9
Facts Laws and Theories 9	

2 Atoms 20

Measurement

1 The Chemical View of Matter

The Language of Chemistry

13

The Greek Influence 20 Antoine Laurent Lavoisier: The Law of Conservation of Matter in Chemical Change Joseph Louis Proust: The Law of Constant Composition 22 John Dalton: The Law of Multiple Proportions Dalton's Atomic Theory 23 Dalton's Idea about Atomic Weights: The Follow-up 24 27 Atoms Are Divisible Electrons 29 32 Protons 32 Neutrons The Nucleus 34 Atomic Number 35 Isotopes 36 Where Are the Electrons? 38

3 Elements in Useful Order—The Periodic Table

Elements Described 49
The Periodic Law—The Basis of the Periodic Table 50
Features of the Modern Periodic Table 53
Uses of the Periodic Table 55
The Periodic Table in the Future 61

Contents

Ionic Bonds 66

Properties of Ions, Atoms, and Molecules 70

65

Covalent Bonds 74

Hydrogen Bonding 82

Van der Waals Attractions 85

Metallic Bonding 85

Molecular Structure 86

Hybridization 87

Valence-Shell Electron-Pair Repulsion Theory 90

5 Some Principles of Chemical Reactivity 98

Rate of Chemical Reaction 102

Reversibility of Chemical Reactions 104

Quantitative Energy Changes in Chemical Reactions 106

Weight Relationships in Chemical Reactions 107

6 Hydrogen Ion Transfer (Acid-Base) and Electron Transfer (Oxidation-Reduction) Reactions 113

Formation of Solutions 113

Ionic Solutions (Electrolytes) and Molecular Solutions

(Nonelectrolytes) 114

Acids and Bases 117

Salts 122

Sodium Chloride (Table Salt) 126

Nitrate Salts 127

Sodium Hydrogen Carbonate 127

Electron Transfer (Oxidation-Reduction) 129

7 Useful Materials from the Earth, Sea, and Air 139

154

Metals and Their Preparation 139

Elements from the Air 148

Glass—Silicon's Domain 150

Chemical Fertilizers—Keys to World Food Problems

The Numbers on the Bag 160

8 The Ubiquitous Carbon Atom—An Introduction to Organic Chemistry 164

Why Are There So Many Organic Compounds? 164
Chains of Carbon Atoms—The Hydrocarbons 165
Structural Isomers 167

Nomenclature—What's in a Name? 170

Optical Isomers 174

Geometric Isomers 177 Functional Groups 178

Aromatic Compounds 179 Contents

ix

Some Applications of Organic Chemistry 185

Some Uses of Hydrocarbons 185

Gasoline 186

Some Important Compounds of Carbon, Hydrogen, and Oxygen 189

Methanol (Methyl Alcohol) 190

Ethanol (Ethyl Alcohol) 191

Propanols (Propyl Alcohols) 192

Ethylene Glycol and Glycerol (Glycerin) 193

Hydrogen Bonding in Alcohols 193

Methanoic Acid (Formic Acid) 196

Ethanoic Acid (Acetic Acid) 196

Fatty Acids 197

Synthetic Detergents (Syndets) 201

Useful Products from Organic Synthesis Reactions 202

Man-Made Giant Molecules—The Synthetic Polymers 209 10

What Are Giant Molecules? 209

Addition Polymers

Copolymers 214

Condensation Polymers 218

Silicones 223

225 Rearrangement Polymers

Polymer Additives—Toward an End Use 226

The Future of Polymers 226

233 11 Biochemistry—Basic Structures

Carbohydrates 233

Starches and Glycogen 236

Cellulose 237

Dietary Fats and Essential Fatty Acids 238

Proteins, Amino Acids, and the Peptide Bond 241

Enzymes 248

Nucleic Acids 253

12 **Biochemical Processes** 261

261 Biochemical Energy and ATP

Photosynthesis 264 Contents

Digestion 268
Glucose Metabolism 271
Synthesis of Living Systems

13 Science and Technology as a New Philosophy 287

A Philosophical and Historical Background 287
Technology: Its Triumphs and Problems 291
Technology and the Human Environment 294
Technological Development and Its Environmental Consequences

Technological Development and Its Environmental Consequences 299

276

Is Technology Escaping Control? 300

14 Energy and Our Society 306

Fundamental Principles of Energy 308
Fossil Fuels 311
Coal Gasification 314
Electricity Production 316
Nuclear Energy 319
Controlled Fusion 329
Solar Energy 330

15 Toxic Substances in Our Environment 337

337 Dose Corrosive Poisons 338 Metabolic Poisons 340 Neurotoxins 349 353 Mutagens Teratogens 357 358 Carcinogens Hallucinogens 361 Alcohols 364

16 Water: Its Use and Misuse

Water Reuse 367

Water Purification in Nature 368
The Scope of Water Pollutants 369

Water Purification: Classical and Modern Processes 379

367

Distillation 382
Freezing 382
Ion Exchange 383
Electrodialysis 384
Reverse Osmosis 385

Do Air Pollutants Solo or Aggregate? 393 A Major Air Pollutant—Sulfur Dioxide 395 Major Air Pollutants—Nitrogen Oxides 400 A Major Air Pollutant—Carbon Monoxide 404 Major Air Pollutants—Certain Hydrocarbons 405 Ozone—A Secondary Pollutant and a Sunscreen 406 Carbon Dioxide—An Air Pollutant . . . Or Is It? 408 The Automobile—A Special Case of Air Pollution 409 What Does the Future Hold? 413

18 Consumer Chemistry 416

Part I—Chemicals in Foods 417

Part II—Medicines 428

Part III—Beauty Aids 442

Part IV—Automotive Products 455

Part V—The Chemistry of Photography 462

Appendix A The International System of Units (SI) 476

Units of Length
Units of Mass
Units of Volume
Units of Energy
Other SI Units
476
477
478
478

Appendix B Temperature Scales 479

Appendix C Factor-Label Approach to Conversion Problems 481

Appendix D Calculations with Chemical Equations 483

Answers to Self-Tests and Matching Sets 488

Photo Credits 497

Index 499