Contents

Chapter 1 Scope of the Book		
Re	ferences	4
Chapter 2 Sett	ing the Scene	5
2.	1 The State of the Planet	5
2.	2 The 'Trilemma'	9
2.	3 Human Population and its Growth	10
2.	4 Our Attitudes to Technology and How We Come	
	by Them	12
2.	5 Science, Controversy and the Media	13
2.	6 Chemistry and the Chemical Industry	15
2.	7 Why We Cannot Turn the Clock Back	17
2.	8 Synthetic Bad, Natural Good?	17
2.	9 Decision-making and 'Wicked' Problems	23
2.1	0 Sustainable Development and	
	Hyperdisciplinarity	24
2.1	1 The Role of the Expert	28
Re	ferences	31
Bit	bliography	33
We	bliography	33
Chapter 3 Sust	ainability and Sustainable Development	35
3.1	What is Sustainability? And is it Different from	
	Sustainable Development?	35
3.2	Environmental Burden or Carrying	
	Capacity	40
3.3	Footprints: Ecological, Carbon and Water	46
3.4	Requirements for Sustainability	48
	- · ·	

Contents

References			49				
Bibliography							
Webliography			51				
Chapter 4	Scien	ce and its Importance	52				
	4.1	What is Science?	52				
	4.2 The Scientific Method						
	4.3	Hypotheses, Models, Theories and Laws	57				
	4.4	Exchange of Scientific Knowledge: Peer Review	58				
	4.5	Science and Authority	59				
	4.6	Science and Technology	59				
	4.7	Good Science, Bad Science and the Media	64				
	4.8	Care in What We Say and How We Say It	65				
	4.9	Ignorance, Uncertainty and Indeterminancy	66				
References							
	Bibliography						
	Web	bliography	70				
Chapter 5	Chem	istry of the Environment	71				
	5.1	Environmental Science and Environmental					
		Chemistry	72				
	5.2	Geochemistry	75				
	5.3	Global Geochemical Cycling of the Elements	77				
	5.4	The Carbon Cycle I: The Role of Carbon Dioxide	79				
	5.5	The Sun	87				
	5.6	The Greenhouse Effect	93				
	5.7	Global Warming Potential	97				
	5.8	The Carbon Cycle II: Methane and its Atmospheric	00				
	5.0	Lifetime	99				
	5.9	The Nitrogen Cycle, Nitrous Oxide and Biomass					
	5 10	Production	104				
	5.10	Human Impact on the Environment	105				
	5.11	Geophysiology or Earth Systems Science	105				
	5.12 D.C	Geoengineering	109				
	Refe	erences	110				
	BIDI	lography	114				
	Wet	bliography	114				
Chapter 6	Wast	e, Pollution and the Second Law of Thermodynamics	116				
	6.1	What is Waste?	116				
	6.2	When Waste Becomes Pollution	118				
	6.3	Chemical Waste: Sheldon's E-factor	120				

Contents

6.4	Approaches to Chemical Waste Minimisation	122
6.5	Waste Minimisation Hierarchy	123
6.6	Chemical Waste: Historical Trends and Changes	126
6.7	Inevitability of Waste (But Not Necessarily of	
	Pollution)	129
6.8	Importance of Defining Boundaries	130
6.9	Life-cycle Inventory	136
6.10	The Central Importance of Thermodynamics	143
6.11	Entropy and Waste	149
6.12	Work and the Carnot Cycle	152
6.13	Real Processes: Exergy	154
6.14	Exergetic Analysis	157
6.15	Exergetic Comparison of Processes for Ethanol	
	Production	160
Refe	rences	167
Bibl	iography	169
Web	liography	169
Chapter 7 Meas	urement	170
7.1	Reaction Yield	171
7.2	Mass Balance	173
7.3	Conversion	174
7.4	Selectivity	175
7.5	Atom Efficiency	176
7.6	Process Chemistry	183
7.7	Balance Yield	184
7.8	Reaction Mass Efficiency	188
7.9	Other Metrics	189
Refe	rences	192
Bibl	iography	193
Web	liography	193
Chapter 8 Chem	istry: Necessary but not Sufficient	194
8.1	Prebiotic Chemistry (Organic, Inorganic and Physical)	195
8.2	The 50 Millionth Chemical Substance	199
8.3	CAS Registry Number 173075-49-5	199
8.4	The Significance of Small Things	200
8.5	Tamiflu	202
8.6	Chemistry in the Real World	204
8.7	Metathesis, Fullerenes and the Nobel Prize	206
8.8	Presidential Green Chemistry Challenge Awards	213
8.9	Green Chemistry: A Brief History	214
8.10	Principles of Green Chemistry	217

xvii

C	n	n	t	p	n	t	ç
~	υ	11	ı	ະ		ı.	э.

xviii			Contents
	8.11	'Green' Reaction Media	236
	Refer	ences	247
	Biblic	ography	251
	Webl	iography	251
Chapter 9	Chemi	cals Processing	253
	9.1	Technological Development and Experience Curves	256
	9.2	Stages of Technological Development	259
	9.3	Investment and Risk	260
	9.4	Product Development	263
	9.5	Patenting	264
	9.6	Application of Process Engineering and Chemistry	265
	9.7	Reaction Sequence	267
	9.8	Mixing and Mass Transfer	268
	9.9	Process Intensification	272
	9.10	Novel Stimuli	276
	9.11	Inherent Safety and Inherent Waste Minimisation	288
	9.12	Process Integration and Industrial Ecology	290
	Refer	ences	298
Bibliography			300
	Webli	iography	301
Chapter 10	Catal	ysis	302
	10.1	Catalysis, Kinetics and the Catalytically Active	
		Species	303
	10.2	Catalysis in the Environment	310
	10.3	Measuring Catalyst Performance	312
	10.4	Catalysis and Sustainability	318
	10.5	Catalysis in Industry	319
	10.6	Waste Reduction and Prevention through	
		Catalysis	330
	10.7	Catalysis and Waste as Feedstocks	331
	10.8	Environmental and Sustainable Catalysis	334
	10.9	Catalysis and Renewables	344
	Refer	ences	348
	Biblic	ography	351
	Webli	iography	351
Chapter 11	Chem	icals from Biomass	353
	11.1	Renewable Resources	354

	Renewable Resources	551
11.2	Biomass, Renewability and Sustainability	355
11.3	Chemistry and Biomass: An Overview	359

Contents

11.4 Chemicals from Biomass: The Nature of Biomass	
and its Derivatives	361
11.5 Chemicals from Biomass: Sources of Biomass	366
11.6 Chemicals from Biomass: Biofuels, Commodities,	
Specialities and 'Platform' Chemicals	373
11.7 Chemicals from Biomass: Biomass Processing	390
11.8 Technological Interdependence and Integration	397
11.9 Technological Constraints	398
References	402
Bibliography	406
Webliography	406
Chapter 12 Energy Production	407
12.1 Primary, Secondary, Renewable and Sustainable	
Energy	408
12.2 Conventional Sources of Energy	410
12.3 Energy from Renewables	418
12.4 Secondary Energy Sources and Energy Storage	428
References	432
Bibliography	434
Webliography	435
Chapter 13 The Chemist as Citizen	436
13.1 Science and Ethics	437
13.2 Rhetoric and Evidence	438
13.3 Science and Public Perception	439
13.4 Scepticism and Open Mindedness	443
13.5 Logic and Fairness	444
13.6 Individual Action	445
13.7 Science, Activism and Advocacy	446
13.8 'Climategate'	446
References	449
Webliography	450
Appendix 1 Finding Stuff Out	451
Appendix 2 Units and Abbrevations	458
Appendix 3 Twelve More Green Chemistry Principles	462
Subject Index	