TABLE OF CONTENTS

		PAGE
I.	MEASUREMENTS, ERRORS, AND COMPUTATIONS Physical Measurements	$1 \\ 2$
	Physical Laws and Measurements	3
	Dimensions	4
	Accuracy and Significant Figures	6
	The Exponential Notation	7
	Approximate Computations	9
	Distribution of Errors	10
	Best value and its Reliability	14
	Application of Error Theory to Experimental Data	17
	Application of Error Theory to Functions of Several Variable	20
	Evaluation of the Constants of Empirical Equations	22
	Graphical Matheds of Computation	# 0
	Graphical Differentiation and Integration	41
	Graphical Evaluation of the Constants of an Empirical	44
	Equation Empirical Equations Which Are Non Lincon in Despect to	46
	Empirical Equations which are Non-Linear in Respect to	40
	Report Writing	49
	report writing	91
II.	THE GASEOUS STATE	
	1. Determination of the Molecular Weight of a Vapor by the	
	Dumas Method	53
	Use of the Barometer	55
	2. Determination of the Molecular Weight of a Vapor by the	
	Victor Meyer Method	57
	3. Effusion of Gases. The Molecular Weight and Diameter	62
TTT		
111.	A The Vener Program and the Heat of Venerization of a	
	4. The vapor rressure and the meat of vaporization of a Liquid*	67
	Correction of a Thermometer Reading for Euroged Stem	70
	5 Surface Tension as a Function of Temperature	70
	o. Surface relision as a runchion of reliperature	11
IV.	THE SOLID STATE	
	6. Sublimation Pressure and Heat of Sublimation*	76
	7. The Linear Rate of Crystallization of a Melt	80
		-
V.	THE STRUCTURE OF ATOMS	
	8. The Radioactive Decay Law	83
	Use of the Lind Electroscope	85
	xi	

TABLE OF CONTENTS

VI. PHYSICAL PROPERTIES AND MOLECULAR CON-STITUTION

- 9. Absorption Spectra of Colored Solutions. Use of the Spectroscope
- VII. SOLUTIONS
 - 10. The Freezing Point of an Aqueous Solution and the Molecular Weight of the Solute Use of a Differential Thermometer Use of the Polarimeter
 - 11. Freezing Point Lowering and Molecular Weight (Beckmann Method)
 - Use of the Tablet Press
 - 12. Boiling Point Elevation and Molecular Weight
 - 13. Viscosity of a Binary Solution Use of the Westphal Balance
 - 14. Surface Tension of a Binary Solution (Drop Number Method)
- VIII. THERMOCHEMISTRY
 - 15. Heats of Ionic Reactions
 - 16. Heats of Combustion. The Bomb Calorimeter
 - IX. EQUILIBRIUM
 - 17. Chemical Equilibrium in a Liquid Phase

X. HETEROGENEOUS EQUILIBRIUM

- 18. Mutual Solubility of Two Liquids
- 19. Solubility Relations in a Three Component System
- 20. Steam Distillation
- 21. Distillation of Solutions of Two Completely Miscible Liquids
 - Use of the Abbé Refractometer
- 22. Fundamentals of Plate Still Fractionation Use of the Sprengel Pycnometer
- 23. The Freezing Point Curve of a Binary Alloy Preparation and Use of a Thermocouple
- XI. CHEMICAL KINETICS
 - 24. The Rate of Oxidation of Iodide Ion by Hydrogen Peroxide. A Clock Reaction
 - 25. The Rate of a Homogeneous Catalyzed Reaction
 - 26. The Temperature Coefficient of Reaction Velocity and the Heat of Activation
 - 27. Catalysis and Inhibition of a Chain Reaction
 - 28. The Rate of Evaporation of a Volatile Solute

xii