List	of	Contributors

Introduction	In	tro	du	ction
--------------	----	-----	----	-------

Chapter 1

THE SOLID-LIQUID INT	ERF	ACE	— M	f. J. j	AYC	ОСК	r	
Forces Between Atoms, Ion								
Attractive and repulsive f					•	•		2
Coulombic forces between	n ione			nocuic	~3	•		2
Interaction between a per				d an i	•	•		
Interaction between two	nanci	nent d	linolo		011	•		
Polarisability .	Jerma	nem c	npotes	5	•	•		
Description of an Interface	•	·	•	•	•	•		4
Surface tension	•	•	•	•	•	•		4
	·	•	•	•	•	•		ୁ
Total surface energy	•	•	•	•	•	•		4 9 5 6 0
Surface entropy	•	•	•	•	•	•		6
Interfacial tension .	•		•					
The Solid Surface .		•	•	•				7
Surface mobility .	•	•	•					7
Conditioning of solid sur								8
Surface tension and surfa	ce free	e energ	gy					9
Calculated values of surfa	ice ter	ision a	and su	Irface	energ	ies		10
Energies associated with e	edges	and co	orners					13
Specific surface area	-					•		14
The surface of real solids					•	•		19
Wetting and Contact Angles				•	•	•	•	22
Magnitude of contact ang		•	•	•	•	•	•	$\frac{22}{23}$
Spreading coefficients	,105	•	•	·	•	•	•	23
The adhesion of liquids to	S solid	Ie	•	•	•	•	•	-
The testing		19	•	·	•	•	•	25
Wetting and non-wetting		·	•	•	•	•	•	25
Adhesion .	•	•	•	•	•	·	1	27
	•	•	•	•	•	•	•	27
Adhesive forces	•	•	•	•	•	•	•	27
/The stickiness of particles	•	•	•	•	•			29

xi

v

xiii

Sliding friction and lubrication	•		
Rolling friction	•		
Adsorption from Solution .			•
The composite isotherm .	•	•	•
Adsorption from completely m			
Adsorption from partially misc	ible li	quids	
Adsorption of dissolved solids	from	soluti	on
The adsorption of polymers			
The adsorption of electrolytes	•	•	•

Chapter 2

ELECTRICAL PHENOMENA ASSOCIATED WIT	H THE
SOLID-LIQUID INTERFACE — A. L. SMITH	•
Introduction	• •
The Electric Double Layer	
Origin of the electric double layer	
The nature and definition of electric potentials in the double	uble layer
Potential determining ions and the Nernst equation .	• •
Adsorption of non-potential determining ions and the inn	er part of
the double layer	
Adsorption of dipolar molecules	
The Stern adsorption isotherm and the discreteness of cha	arge effect
The diffuse region of the double layer in solution .	• •
Capacity of the diffuse region of the double layer	
Double layer on the solid side of the interface .	
Free energy of the diffuse double layer	
Electrokinetic Properties of Dispersions	
Classification	
The zeta potential	
Experimental determination of electrophoretic mobilities	
Stationary levels in microelectrophoresis cells	• •
Choice of microelectrophoresis cell	
Experimental detail	• •
Optical corrections	
Accuracy of electrophoretic mobilities	
Conversion of mobilities to zeta potentials	

Chapter 3

FUNDAMENTAL ASPECTS OF DISPERSION G. D. PARFITT The Dispersion Process The three stages of the dispersion process Dispersibility Wetting of the external and internal surfaces Mechanical breakdown of clusters Stability Maximum rate of flocculation Forces of interaction between particles

CONTENTS	vii
London-van der Waals attractive forces The coulombic repulsive force The total interaction energy Rate of slow flocculation Application of the DLVO theory Stability arising from adsorbed layers	92 96 98 101 102 109
Concentrated dispersions .	11

Chapter 4

~	inapres 1					-				
P	RECIPITATIO	N - A. G	. WA	LTO	V	•				
	Introduction	• •					•'	•		122
	The Metastable		•		•	•				123
	Formation and	Stoichiome	try of	Cluste	rs an	d Met	astabl	e Pha	ses	124
	Nucleation Theo	ory .								128
	Homogeneous	nucleation	ι.							128
	Heterogeneou	s nucleation	n						•	130
	Criticisms of a						•	•	•	131
	Nucleation of Po			•	•	•	•	•	•	131
	Secondary or An		cleatio	n n	•	•	·	•	•	132
	The Role of the	Impurity S	uhetra	teF	nitavi	,	·	•	•	132
	Experimental Te	sts of Nucl	estion	Theo	pitanj rv	<i>r</i>	·	•	•	132
	Heterogeneou			Theo	I y	•	·	•	•	
	Homogeneous			•	•	•	•	•	•	135
	Solution Phase 1		ι.	•	•	•	•	•	•	137
					•		•	•	•	141
	Effect of Nuclea	tion Mecha	inism (on Pre	cipita	ite Ch	aracte	ristics	\$	142
	Precipitation Ki		•	•	•	•		•		144
	Precipitate Morp	phology	•	•	•	•	•			150
	Ageing and re	crystallisati	ion		•					158
	Summary .	• •	•	•			-			161

11

Chapter 5 . F.

ASSESSMENT OF DISP	ER S	SION -		S. H.	BE	LL and	d		
V. T. CROWL									
Introduction		•		•		•			165
The Nature of Powders									167
The Process of Dispersion									170
Technological Properties of	Dis	persion							171
Sedimentation behaviour		^ .							172
Rheological behaviour	•						÷	-	174
Methods of Assessment of	the	Degree	of	Dispers	ion	and Di	isper	sion	
Stability							p		178
Control tests for degree of	of di	spersior	Ĺ						170
√Particle size analysis					-				178
								•	
Sedimentation behaviour	:	•	:	·	·	•	•	•	180
Sedimentation behaviour	•	•	•	•	•	•	•	•	180 186
Sedimentation behaviour Rheological properties		• • •		•		•	• • •	•	180 186 190
Sedimentation behaviour				• • • •				•	180 186

Chapter 6

SURFACE-ACTIVE COMPOUND	> S —	W. B	LACK
Introduction		•	
Surface Activity .			
Properties of Surface-active Agents			
Selection of Surface-active Agents			-
Dispersion of Pigments in Aqueous	Media	•	•
Foaming		٠	•
Water-based stoving paints	•	•	•
Miscellaneous aqueous dispersions	•	•	·
Dispersion of Dispersions	\$. 	.:	•
Dispersion of Pigments in Non-aque	ous M	edia	•
Universal Tinters			
Pigment Flushing			
Pigment-resin Printing of Textiles.			
Problems and Prospects			
-			

Chapter 7

TECHNICAL ASPECTS OF D	DISPI	ERSIO	N - L R SHEPPARD
Introduction			
Definitions and Objectives	•	•	•
Classification of Type of System	1 Inv	Jved	•
Range of Equipment Available	1. 111 9.	Sivea	•
Low shear rate equipment	•	•	•
High shear rate mixers .	•	•	•
Ball mills	·	•	•
Roll mills	•	•	•
Range of Industries and Types			•
Adhesives	of Pr	oauct	•
Ceramics and refractories	•	•	•
Chamicala	·	•	•
Chemicals . Paint	·	•	•
	•	•	•
Paper industry	•	•	•
Pharmaceuticals Pigments and dyestuffs	•	•	
	•	•	
Plastics	•		•
	•	•	•
Rubber	• .		
Economics of Dispersion Opera	tions		
Dispersion Stage Optimisation a	ind F	ormula	ition
Optimisation experiments			
Use of rheology			
Extraction from final formula	tion		
		-	-
Chapter 8			
A	** -		
INORGANIC PIGMENTS -	H.L	D. JEF	FERIES
Introduction			
Classification			
Manufacture .			
Pigments in paints and inks			

viii

The colour of inorganic pigments			289
Physical and Chemical Aspects of Inorganic Pigments	•		290
A Particle size distribution			290
Rugosity, roughness or smoothness factors.			291
The effect of milling (micronising) of pigments	•		292
The chemical composition of the surface .			295
Dispersion of Inorganic Pigments			296
Interaction of pigment with medium—oil absorption .			297
Pigment wetting in practice			299
The breakdown of aggregates and agglomerates .			303
✓ Practical mill base formulation—the Daniel flow point			306
Rheological aspects of dispersion			309
The achievement of a disperse state		-	315
Influence of the Degree of Pigment Dispersion on the	Öp	tical	.,,
Properties of Surface Coatings	· ·		319

Chapter 9

ORGANIC PIGMENTS - 1	H.	D. B.	REA	RLEY	an d	
F. M. SMITH						
Introduction		•				325
Chemical Classification of Organ	ic P	Pigment	ts.			326
Physical Properties Relating to A	v ppl	ication	Prop	w rties		329
\checkmark Particle size as a powder .			. `			329
✓ Particle size in dispersion.		• •	•			330
Surface area and crystal shape						334
Interfacial energies .						335
The Application of Pigments						336
Extremely high viscosity system	ns			•		337
Very high viscosity systems	•	•				337
High viscosity systems .						337
Medium viscosity systems						339
Low viscosity systems	•	•				340
The Dispersion of Organic Pigme	ents	•		•		341
Conclusions						377