		PAGE
Introduction	-	- xiv
Translator's preface	-	- xxi
Notation and nomenclature	-	- xxii
List of symbols	-	- xxiv

......

/ CHAPTER I

ELEMENTS OF CAPILLARITY

1.	Mechanical equilibrium and physico-chemical e	quili	brium	ı -	
2.	Surface tension	-	-	-	1
3.	Condition of mechanical equilibrium of a surfa	ce	-	-	6
4.	Consequences of Laplace's formula	-	-	-	8
5.	Equilibrium at a line of contact	-	-	-	9
6.	Mechanical work done by a capillary system	-	, - '	-	10
7.	Note on the definition of the volumes of the tw	vo pł	ases	-	14
8.	Surface tension of a solid: the contact angle	-	-	-	14
9.	Dupré's equation and adhesion	-	-	-	17

✓ CHAPTER II

MODEL OF A SURFACE: THE DEFINITION OF ADSORPTION AND OF THE ENERGY AND ENTROPY OF SURFACES

1.	The real system and a simplified model	-	-	21
2.	The difficulty inherent in the use of a dividing surface	-	-	24
3.	The relative adsorption	-	-	26
4.	Simplified form of the relative adsorption -	-	-	27
5.	Direct measurement of the relative adsorption at t	he fre	e	
	surface of a solution	-	-	29
6.	Relative surface energy and relative surface entropy	- '	-	30
7.	The reduced adsorption	-	-	31
8.	Applicability of the model surface	-	-	31
9.	The Gibbs surface model and the change of surface	tensic	n	
	with time	-	-	33

CHAPTER III

THE FIRST PRINCIPLE OF THERMODYNAMICS

1.	Choice of variables	-	· -		-	-	-	· -	-	34
2.	Closed systems -	-	-	. –	-	-	-	-	-	.34

3.	Statement of the fir	rst	princi	ple	of	thermo	dyna	mics	for	PAGE
	capillary systems	-	-	-	-	-	-	- ·	-	35
4.	Thermal coefficients	-	-	-	-	-	-	-	-	36
5.	Change of variables	-	-	-	-	-	-	-	-	37

CHAPTER IV

THE SECOND PRINCIPLE OF THERMODYNAMICS

1.	The second principle and the affinity of adsorption	-	-	40
2.	Fundamental equations for a closed system	-	-	4 0
3.	Thermal coefficients and derivatives of the entropy	-	-	41
4.	Heat of extension of the surface: Kelvin's equation	-	-	42
5.	Total energy of extension of the surface	<u>-</u> '	-	43
6.	Change of variables	-	-	44
7.	Thermal coefficients in equilibrium displacements inv	olvin	g	
	plane surfaces	-	-	44
8.	The variables T, p, A	-	-	47
9.	Indirect determination of the irreversible heat of adso	orptio	n	4 8
10.	Fundamental equations for open systems	-	-	52
11.	Choice of variables: alternative free energy functions	-	-	53

CHAPTER V

FUNDAMENTAL FORMULAE IN INTENSIVE VARIABLES

1.	Object of the chapter	-	-	- '	-	- 55
2.	Variables determining the surface	energy an	d surf	ace es	ntrop	y 55
3.	Intensive properties of the surface	e -	-	-	- ``	- 57
4.	Change from extensive to intensi	ve variab	\mathbf{les}		-	- 58
5.	Surface chemical potentials -	-	-	-	-	- 59
6.	Fundamental equations for the in	nterphase	-	-	-	- 60
7.	Fundamental equations in intens	ive varial	oles	-	-	- 61
8.	The surface energy	-	-	-	-	- 62
9.	The differential of the surface	tension :	gener	alizat	ion c	of
	Gibbs' equation	-	-	-		- 62
LO.	The dynamic surface tension of a	solution	-	-	-	- 63
11.	Bibliography of methods of me	easuring	dynai	nic s	urfac	e
	tension	-	-	-	-	- 68

CHAPTER VI

Equilibrium Conditions. Application of the Phase Rule to Capillary Systems. Surface Films

1.	Affinities of adsorption	-	-	-	-	-	-	-	71
2.	Conditions for adsorption	equil	ibriun	n	-	-)	-	-	71

. vi

÷

3.	Surface carrying several surface phases	-	-	раде 72
4.	Types of surface: contiguous and non-contiguous s	surfac	e	
	phases	-	-	74
5.	Variance of a capillary system with curved interfaces	5	-	75
6.	Variance of a capillary system with plane interfaces	-	-	77
7.	Systems having both curved and plane interfaces	-	-	78
8.	The physical states of a surface film of a fatty acid	-	-	79
9.	Squeezing out of a floating lens by a surface film	-	-	81

wii

✓ CHAPTER VII

GIBBS' ADSORPTION EQUATION

/1.	The Gibbs formula and the adsorption Γ	-	-	-	-	85
2.	The Gibbs formula and relative adsorptio	\mathbf{ns}	-		-	86
/3.	The adsorption of a gas at the surface of	a liqu	\mathbf{id}		-	87
4.	Surface tension of a solution measured at a	eonsta	$\operatorname{nt} T$ (and p	-	88
5.	Comparison of measurements at constant 2	T and	p wit	h thos	se	
	at constant T	-	-	-	-	89
6.	The relative adsorption at the free surface	of wa	ter+	alcoh	ol	
	mixtures	-	-	-	-	90
7.	Experimental test of the Gibbs equation	- , ``	-	-	-	92
8.	Binary solutions in the presence of air	-	-	-	-	92
⁄9 .	Surface activity	-	-	-	-	94

CHAPTER VIII

EXTREME VALUES OF SURFACE TENSION: SINGLE SURFACE Phase and No Chemical Reactions

1.	Variance	96
2:	Extreme values of the surface tension in isothermal equi-	
	librium displacements: the line $(\delta \sigma)_T = 0$	96
3.	Extreme values of the surface tension in isobaric equilibrium	
	displacements: the line $(\delta\sigma)_p = 0$	98
4.	The line of uniform composition, or the indifferent line -	99
5.	The point of completely uniform composition	100
6.	Values of the adsorptions at the point of completely uniform	
	composition	100
7.	Proof that the line of uniform composition, the line	
	$(\delta\sigma)_T = 0$, and the line $(\delta\sigma)_p = 0$, meet at the point of	
	completely uniform composition	101
8.	Extreme values of the surface tension for displacements at	
	constant T and p. The surface $(\delta \sigma)_{T,p} = 0$	103
9.	Properties of the surface $(\delta\sigma)_{T,p} = 0$	104

10. 11. 12.	Completeely immiscible phases - Extreme values of surface tension and the Gibbs adsorptions Anomalous extreme values: the critical concentration for micelle formation -	PAGE 106 107
	CHAPTER IX	
	Extreme Values of the Surface Tension: General Theorems and Indifferent States	
1.	Fundamental equations	
2.	Extreme values of the surface tension in isothermal equilib-	
	rium displacements: the line $(\delta \sigma)_T = 0$	
3.	Extreme values of the surface tension in isobaric equilib-	
	rium displacements: the line $(\delta \sigma)_p = 0$	
4.	Extreme values of the surface tension in isothermal,	
	isobaric equilibrium displacements: the surface $(\delta \sigma)_{T,p} = 0$	119
5.	The line $(\delta p)_T = 0$: generalization of Saurel's theorem -	120
6.	Indifferent states of a capillary system	121
7.	Bulk-phase indifference	124
8.	Properties of the surface $(\delta \sigma)_{T,p} = 0$	125
9.	The indifference of capillary systems and the choice of the	
	dividing surface	126
10.	The use of relative adsorptions	127
11.	Example of the complete indifference of a divariant system:	
	myristic acid on water with two surface phases	127
12.	Example of an extreme value of the surface tension caused by	
	the formation of an addition compound which gives rise to	
	a second surface phase	130

CHAPTER X

EQUILIBRIUM PROCESSES IN CLOSED CAPILLARY SYSTEMS

1.	Extension of Duhem's theorem to capillary systems	133
2.	Examples	135
3.	Choice of variables in the study of equilibrium displacements	136
4.	Surface transitions of various orders	137

CHAPTER XI

THE SURFACE TENSION OF PURE LIQUIDS

1.	The microscopic interpretation of the Gibbs surface	139
2.	Surface tension and the pressure tensor	140
3.	Surface tension and molecular distribution functions in fluids	142

viii

4.	Surface tension and the partition function		- 144
5.	Application of the cell model to the calculation of su	rfac	e
	tension		-
6.	Discussion of surface tension in the light of the simpl	e cel	11
	model		- 149
7.	The incomplete-monolayer model		- 152
8.	Variation of surface tension with temperature. The form	nula	e
	of Eötvös and Katayama		- 153
9.	Principle of corresponding states and surface tension -		- 154
10.	The parachor		- 156

CHAPTER XII

SURFACE TENSION OF SOLUTIONS: MIXTURES OF MOLECULES OF SIMILAR SIZE

т.	The statistical model	•	- 158
2.	Choice of macroscopic variables	•	- 158
3.	Use of the monolayer model		- 161
4.	Surface areas based on the monolayer model -	. i	- 164
5.	Perfect solutions and ideal solutions		- 165
6.	Surface tension of perfect solutions		- 166
7.	Surface tension of ideal dilute solutions	• •	- 170
8.	Free energy of regular solutions	•	- 171
9.	Composition of the surface phase and the surface tens	ion o	f
	a regular solution		- 175
0	Incompatibility of the monolayer model and the	Cibb	~
	incompanion of the menologic model and the	GIUD	3
	equation		s - 177
11.	equation	lution	s - 177 1 179
11. 12.	equation	lution solu	s - 177 1 179 -
11. 12.	equation - Extreme values of the surface tension of a regular sol Surface tension of the interface between two regular tions: Antonow's rule	lution solu	s - 177 1 179 - - 182
11. 12.	equation	lution solu	s - 177 1 179 - - 182 - 186
11. 12. 13.	equation	lution solu	s - 177 1 179 - - 182 - 186 - 188
11. 12. 13. 14.	equation	lution solu	s - 177 1 179 - - 182 - 186 - 188 - 189
11. 12. 13. 14. 15. 16.	equation	lution solu del	s - 177 - 179 - 182 - 186 - 186 - 188 - 189 -
11. 12. 13. 14. 15. 16.	equation	lution solu del	s 177 n 179 - 182 - 186 - 186 - 188 - 189 -

CHAPTER XIII

SURFACE TENSION OF SOLUTIONS: MIXTURES OF MOLECULES OF DIFFERENT SIZES

1.	Introduction	199
2.	Effect of the surface on the configurational term	201
3.	The parallel-layer model: athermal solutions -	202

* . . .

261

•

4.	4. The parallel-layer model: non-athermal solutions						
5.	Comparison with experiment	205					

CHAPTER XIV

INSOLUBLE FILMS

1.	Gaseous insoluble films -	-	-	-	-	-	-	
2.	Relation between surface press	ure (of a fi	lm an	d the	activ	vity	
	of the substrate in the surface	 ·	-	-	-	-	-	210
3.	Surface condensation -	-	-	-	<u>-</u>	-	-	213

CHAPTER XV

EFFECT OF CURVATURE ON THE EQUILIBRIUM STATE OF A PURE SUBSTANCE

1.	Fundamental equations	-	-	-		
2.	Variation of curvature at constant temp	eratu	re: et	ffect	on	
	the vapour pressure. Kelvin's equation	-	, - .	-	- 21	8
3.	Capillary condensation	-	-	-	- 22	22
4.	Variation of curvature at constant temp	eratu	re: ef	ffect	on	
	the chemical potential	-		2 -	- 22	27
5.	Effect of curvature on the heat of evaporation	ation	-	-	- 22	28
6.	Heat of evaporation of a liquid contained	l in a	poro	us so	lid 23	5
7.	Variation of curvature at constant extern	al pre	ssure	e: effe	ect	
	on the equilibrium temperature -	-	-	-	- 23	9
8.	Extension to solid particles	-	-	-	- 24	3
9.	Effect of curvature on the triple point	-	-	-	- 24	4
10.	Solidification of a liquid in a porous solid	-	-	-	- 25	1
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

CHAPTER XVI

INFLUENCE OF CURVATURE ON THE EQUILIBRIUM STATE OF A MIXTURE

1.	Fundamental equations
2.	Effect of curvature on the partial pressures of the com- ponents of a liquid droplet of given composition at constant
	temperature
3.	Particular case: influence of curvature on the partial pressure
	of a pure liquid in a mixture of insoluble gases at constant
	total gas pressure and constant temperature
4	Dute containing a new malatile community of 1'1't C

4. Drop containing a non-volatile component. Stability of a drop of salt solution -

ণ্ট x

		PAGE	
5.	Experiments of La Mer and Gruen	266	
6.	Gas bubble in a liquid of given composition at a given		
	temperature	268	
7.	General equation for the effect of changing curvature at		
	constant temperature		
8.	Effect of curvature of a droplet on the pressure at which a		
	vapour mixture of given composition, at constant tem-		
	perature, condenses on it		
9.	Effect of particle size on solubility of solids		
10.	Coexistence of ice, water vapour and pure liquid water in the		
	presence of air		
11.	Effect of size on equilibrium between a floating globule and		
	a surface film	274	
12.	Change of azeotropic composition with surface curvature	277	
13.	Effect of particle size on equilibrium of a heterogeneous		
	chemical reaction	280	
14.	Effect of curvature on the surface tension of a mixture	284	

CHAPTER XVII.

SURFACE TENSION OF CRYSTALS

1.	Introduction	1 -	-	-	-	· -	-	-	-	-	28
2.	Surface tens	ion of a	cry	stal fa	ce	-	-	-	-	-	28
3.	Geometric v	ariables	s wh	ich de	fine	the s	ize ar	nd sha	ape of	fa	
	crystal -	-	<u>'-</u>		-	-	-	-	- 5.	-	29
4.	Equilibrium	shape o	ofa	crystal	l -	-	-	-	-	-	2
5.	Extreme val	lues of t	he f	unctio	n Σσ	$\gamma_A \gamma$	-	-	-	-	2
6.	Chemical po	tential	and	vapou	r pre	ssure	of a s	mall	crysta	ıl -	3
7.	Case in whic	h the pr	essu	re tens	sor in	the c	rysta	l redu	ces to	an	
	isotropic pre	essure	-	-	-		-	-	-	-	3
8.	Mechanical	aspects	of th	ie surf	ace t	ensio	n of a	cryst	tal fac	e -	3
9.	Origin of the	e state (of te	nsion (of the	e inte	rface	-	-	-	3
10.	Bibliograph	y -	-	-	-	-	-	-	-	-	3

CHAPTER XVIII

THE ROLE OF NUCLEI IN THE INITIATION OF PHASE TRANSITIONS

1.	Introduction	310
2.	Properties of the droplet-phase or the crystal-phase. Defini-	
	tion of the critical nucleus	313
3.	Free energy of formation of a droplet-phase	319
4.	Special case in which the droplet phase is a pure component	320
5.	Special case of crystal nuclei	322

xi

phase3237. Entropy of mixing of embryos3258. Comparison of the separate-phase embryo and macro- molecular embryo models3259. Equilibrium population of embryos in a liquid bulk phase32732732810. Case of gaseous bulk phase32811. The appearance of critical nuclei and the phenomenon of nucleation32912. The two modes of nucleation33113. Kinetics of nucleation33214. Experimental study of nucleation in liquids33515. Calculation of the mean freezing point of water droplets-33716. Calculation of the surface tension at the ice/water interface from the freezing point of droplets17. Ostwald's rule and iso-nucleation curves34018. Two-component embryos and critical nuclei34220. Nuclei at a liquid/solid or vapour/solid interface345	6.	The macromolecular embryo: embryos consider mers in statistical equilibrium with monomer i	ed as n the	poly bull	- k
 7. Entropy of mixing of embryos 325 8. Comparison of the separate-phase embryo and macro- molecular embryo models 325 9. Equilibrium population of embryos in a liquid bulk phase - 327 10. Case of gaseous bulk phase 328 11. The appearance of critical nuclei and the phenomenon of nucleation 329 12. The two modes of nucleation 331 13. Kinetics of nucleation 332 14. Experimental study of nucleation in liquids		phase	-		- 323
 8. Comparison of the separate-phase embryo and macro- molecular embryo models 325 9. Equilibrium population of embryos in a liquid bulk phase - 327 10. Case of gaseous bulk phase 328 11. The appearance of critical nuclei and the phenomenon of nucleation 329 12. The two modes of nucleation 331 13. Kinetics of nucleation 332 14. Experimental study of nucleation in liquids	7.	Entropy of mixing of embryos	-	-	- 325
 molecular embryo models	8.	Comparison of the separate-phase embryo a	nd r	nacro	-
 9. Equilibrium population of embryos in a liquid bulk phase - 327 10. Case of gaseous bulk phase 328 11. The appearance of critical nuclei and the phenomenon of nucleation 329 12. The two modes of nucleation 331 13. Kinetics of nucleation 332 14. Experimental study of nucleation in liquids 332 15. Calculation of the mean freezing point of water droplets - 337 16. Calculation of the surface tension at the ice/water interface from the freezing point of droplets 340 17. Ostwald's rule and iso-nucleation curves 341 19. Nuclei at a liquid/liquid interface		molecular embryo models	-	-	- 325
 Case of gaseous bulk phase 328 The appearance of critical nuclei and the phenomenon of nucleation 329 The two modes of nucleation 331 Kinetics of nucleation 332 Experimental study of nucleation in liquids 335 Calculation of the mean freezing point of water droplets - 337 Calculation of the surface tension at the ice/water interface from the freezing point of droplets 340 Two-component embryos and critical nuclei 341 Nuclei at a liquid/liquid interface	9.	Equilibrium population of embryos in a liquid b	ulk p	hase	- 327
 The appearance of critical nuclei and the phenomenon of nucleation	10.	Case of gaseous bulk phase	-	-	- 328
nucleation32912. The two modes of nucleation33113. Kinetics of nucleation33214. Experimental study of nucleation in liquids33515. Calculation of the mean freezing point of water droplets-33716. Calculation of the surface tension at the ice/water interface from the freezing point of droplets17. Ostwald's rule and iso-nucleation curves34018. Two-component embryos and critical nuclei34119. Nuclei at a liquid/liquid interface34220. Nuclei at a liquid/solid or vapour/solid interface345	11.	The appearance of critical nuclei and the pher	nome	non o	f
 The two modes of nucleation		nucleation	• •	-	- 329
 Kinetics of nucleation Kinetics of nucleation 332 Experimental study of nucleation in liquids 335 Calculation of the mean freezing point of water droplets 337 Calculation of the surface tension at the ice/water interface from the freezing point of droplets 339 Ostwald's rule and iso-nucleation curves 340 Two-component embryos and critical nuclei 341 Nuclei at a liquid/liquid interface 342 Nuclei at a liquid/solid or vapour/solid interface 	12.	The two modes of nucleation	-	-	- 331
 Experimental study of nucleation in liquids 335 Calculation of the mean freezing point of water droplets - 337 Calculation of the surface tension at the ice/water interface from the freezing point of droplets 339 Ostwald's rule and iso-nucleation curves 340 Two-component embryos and critical nuclei 341 Nuclei at a liquid/liquid interface 342 Nuclei at a liquid/solid or vapour/solid interface 345 	13.	Kinetics of nucleation	. .	-	- 332
 15. Calculation of the mean freezing point of water droplets - 337 16. Calculation of the surface tension at the ice/water interface from the freezing point of droplets 339 17. Ostwald's rule and iso-nucleation curves 340 18. Two-component embryos and critical nuclei 341 19. Nuclei at a liquid/liquid interface 342 20. Nuclei at a liquid/solid or vapour/solid interface 345 	14.	Experimental study of nucleation in liquids	-	-	- 335
 16. Calculation of the surface tension at the ice/water interface from the freezing point of droplets 339 17. Ostwald's rule and iso-nucleation curves 340 18. Two-component embryos and critical nuclei 341 19. Nuclei at a liquid/liquid interface 342 20. Nuclei at a liquid/solid or vapour/solid interface 345 	15.	Calculation of the mean freezing point of water	dropl	ets	- 337
from the freezing point of droplets	16.	Calculation of the surface tension at the ice/wat	er int	erfac	e
17. Ostwald's rule and iso-nucleation curves34018. Two-component embryos and critical nuclei34119. Nuclei at a liquid/liquid interface34220. Nuclei at a liquid/solid or vapour/solid interface345		from the freezing point of droplets	-	-	- 339
18. Two-component embryos and critical nuclei34119. Nuclei at a liquid/liquid interface34220. Nuclei at a liquid/solid or vapour/solid interface345	17.	Ostwald's rule and iso-nucleation curves -	-		- 340
19. Nuclei at a liquid/liquid interface34220. Nuclei at a liquid/solid or vapour/solid interface345	18.	Two-component embryos and critical nuclei	-	-	- 341
20. Nuclei at a liquid/solid or vapour/solid interface - 345	19.	Nuclei at a liquid/liquid interface	-	-	- 342
	20.	Nuclei at a liquid/solid or vapour/solid interface		. .	- 345

CHAPTER XIX

CALCULATION OF THE SURFACE TENSION UNDER NON-EQUILIBRIUM CONDITIONS FOR THE MONOLAYER MODEL

1.	Introduction	-	-		-	-	-	-	349
2.	Calculation of the pure	dynan	nic su	rface '	tensi	on-	-	-	351
3.	Pure dynamic surface te	nsion o	of reg	ular so	lutio	nsan	d perf	ect	
	solutions	-	-	-	-	-	· _	-	
4.	Pure dynamic surface t	ensior	ı of s	olutio	ns of	mole	ecules	of	
	different sizes	-	-	-	-	-	-	-	
5.	Difficulties inherent in	the	calc	ulatior	ı of	inte	rmedi	ate	
	dynamic surface tension	IS -	-	-	-	-	-	-	356
6.	Regular solutions and p	erfect	solut	ions	-	-	-	-	357
7.	Molecules of different si	zes	-	-	-	· -	-	-	358
8.	Application to the syste	em wa	ter + s	sebaci	e acid	1 -	-	-	361

CHAPTER XX

THE MULTIPLE LAYER MODEL OF A SURFACE

1.	Introduction: the necessity for a thermody	namic	mod	el moi	re	
	general than the monolayer model -	-	-	-	-	363
2.	Autonomous and non-autonomous phases	-	-	-	-	365
3.	The free energy of contact	-	-	-	-	366

xii

•	С	0	N	т	Е	N	т	s	
---	---	---	---	---	---	---	---	---	--

				D.C.
4.	Properties of the free energy of contact	-	•	PAG 36
5.	Cross chemical potentials at a surface of discontinuit	ity	-	37
6.	The surface of a liquid treated as a multilayer transition	on reg	tion	37
7.	Homogeneity of the function F	-	, _	375
8.	Free energy of the surface region and a generaliz	ation	of	••••
	the Gibbs equation	-		373
9.	Particular case of equilibrium	-	-	37
10.	Choice of limits of the surface layer	-	-	37
11.	Comparison with the Gibbs equation	_	-	37
12.	Detailed study of the surface layers and the interf	aces	be-	
	tween them	-	-	378
13.	Properties of the external layers	-	-	380
14.	Pure dynamic surface tension	_	-	382
15.	Pure dynamic surface tension and the free energy of	conta	act	
	of the interface	-	_	384
16.	Pure dynamic surface tension of a regular solution	-	-	384
17.	Comparison with the Gibbs surface model	-	_	386
	▲ · · · · · · · · · · · · · · · · · · ·			500

CHAPTER XXI

Adsorption of Electrolytes: Electrocapillary Systems

1.	Thermodynamics of a closed electrocapillary system
2.	Extension to open systems
3.	Plane interphase between two electrically conducting phases
	in equilibrium
4.	Possibility of a thermodynamic study of a partial system
	limited by a cylindrical surface normal to the interface
5.	Homogeneity parallel to the surface
6.	Equilibrium in systems where each component can be
	present in all surface layers
7.	Adsorption of a completely dissociated salt at a water/ai
	interface
8.	Adsorption of a partially dissociated 1 : 1 electrolyte -
9.	General case of a partially dissociated polyvalent electrolyte
10.	The potential difference $\alpha^{I} - \alpha^{II}$ in the case of true equilibrium
11.	Surface of an ideal polarized electrode
12	Effect of concentration changes
13	Effect of advorbed substances on the shane of the electro
10,	consillary ourse
	Bibliography
	Index of Authors
	Index of Subjects

xiii