Contents

Preface VII

List of Contributors IX

Colloid Aspects of Cosmetic Formulations with Particular Reference to Polymeric Surfactants $\ 1$

Tharwat F. Tadros

Abstract 1

- 1.1 Introduction 2
- 1.2 Interaction Forces and Their Combination 4
- 1.3 Self-Assembly Structures in Cosmetic Formulations 11
- 1.4 Structure of Liquid Crystalline Phases 12
- 1.4.1 Hexagonal Phase 12
- 1.4.2 Micellar Cubic Phase 13
- 1.4.3 Lamellar Phase 14
- 1.4.4 Discontinuous Cubic Phases 15
- 1.4.5 Reversed Structures 15
- 1.5 Driving Force for Formation of Liquid Crystalline Phases 15
- 1.6 Polymeric Surfactants in Cosmetic Formulations 17
- 1.7 Polymeric Surfactants for Stabilization of Nanoemulsions 20
- 1.8 Polymeric Surfactants in Multiple Emulsions 28
- 1.9 Polymeric Surfactants for Stabilization of Liposomes and Vesicles 31
- 1.10 Conclusions 33 References 33
- 2 Formulation and Stabilization of Nanoemulsions Using Hydrophobically Modified Inulin (Polyfructose) Polymeric Surfactant 35 Tharwat F. Tadros, Martine Lemmens, Bart Levecke, and Karl Booten

Abstract 35

- 2.1 Introduction 36
- 2.2 Materials 38
- 2.3 Preparation of Nanoemulsions 39

- 4.7.4 Solids Loading 72
- 4.7.5 SPF Performance in Emulsion Preparations 73
- 4.8 Discussion 74
- 4.8.1 Competitive Interactions in Formulations 76
- 4.9 Conclusion 77 References 77

5 Use of Associative Thickeners as Rheology Modifiers for Surfactant Systems 79

Tharwat F. Tadros and Steven Housley

Abstract 79

- 5.1 Introduction 79
- 5.2 Surfactant Systems as Rheology Modifiers 80
- 5.3 Associative Thickeners as Rheology Modifiers 81
- 5.4 Materials and Methods 86
- 5.5 Results 87
- 5.6 Discussion 90
- 5.7 Conclusion 91
 - References 91

6 Cosmetic Emulsions Based on Surfactant Liquid Crystalline Phases: Structure, Rheology and Sensory Evaluation 93

Tharwat F. Tadros, Sandra Léonard, Cornelis Verboom, Vincent Wortel, Marie-Claire Taelman, and Frederico Roschzttardtz

Abstract 93

- 6.1 Introduction 93
- 6.2 Structure of Liquid Crystalline Phases 94
- 6.3 Driving Force for the Formation of Liquid Crystalline Phases 95
- 6.4 Formulation of Liquid Crystalline Phases 97
- 6.4.1 Oleosomes 97
- 6.4.2 Hydrosomes 98
- 6.5 Emulsion Stabilization Using Lamellar Liquid Crystals 98
- 6.6 Materials and Methods 99
- 6.7 Results and Discussion 101
- 6.7.1 Emulsion Structure and Rheology 101
- 6.7.2 Emulsion Structure and Sensory Attributes 103
- 6.7.3 Emulsion Structure, Rheology and Sensory Attributes 103
- 6.8 Conclusion 104 References 105

VIII Contents

I		
	7	Personal Care Emulsions Based on Surfactant-Biopolymer Mixtures:
		Correlation of Rheological Parameters with Sensory Attributes 107
		Tharwat F. Tadros, Sandra Lionard, Cornelis Verboom, Vincent Wortel,
		Marie-Claire Taelman, and Frederico Roschzttardtz
		Abstract 107
	7.1	Introduction 108
	7.2	Materials and Methods 109
	7.2.1	Materials 109
	7.2.2	Preparation of Powder Dispersions 109
	7.2.3	Preparation of the Emulsion 110
	7.2.4	Rheological Measurements 111
	7.2.5	Principal Component Analysis (PCA) 112
	7.3	Results 112
	7.3.1	Rheological Results for Xanthan Gum and KX Solutions 112
	7.3.2	Rheological Investigation of Stabilizing Systems 113
	7.3.3	Rheological Investigations of Emulsions 114
	7.3.3.1	Influence of Arlatone Concentration 114
	7.3.3.2	Influence of Oil Volume Fraction 117
	7.3.3.3	Influence of Temperature on the Rheology of KX, Arlatone V100,
		Arlatone V175 and the Emulsions Prepared Using the Stabilizers 119
	7.3.4	PCA Results 119
	7.4	Discussion 122
	7.5	Conclusions 125
		References 126
	8	Correlation of "Body Butter" Texture and Structure of Cosmetic
		Emulsions with Their Rheological Characteristics 127
		Tharwat F. Tadros, Sandra Lionard, Cornelis Verboom, Vincent Wortel,
		Marie-Claire Taelman, and Frederico Roschzttardtz
		Abstract 127
	8.1	Introduction 128
	8.2	Experimental 129
	8.2.1	Materials 129
	8.2.2	Rheological Measurements 129
	8.2.2.1	Flow–Viscosity Curve Measurements 129
	8.2.2.2	Dynamic (Oscillatory) Measurements 131
	8.2.2.3	Constant Stress (Creep Test) Measurements 132
	8.2.3	Schematic Representation of the Rheological Curves 132
	8.2.4	Spectrum Descriptive Analysis 132
	8.2.5	Principal Component Analysis 133

- 8.3 Results and Discussion 133
- 8.4 Conclusion 143
 - References 144

Interparticle Interactions in Color Cosmetics 145

Lorna M. Kessell and Tharwat F. Tadros

Abstract 145

- 9.1 Introduction 145
- 9.2 Fundamental Principles of Preparation of Pigment Dispersions 146
- 9.2.1 Wetting of the Powder 146
- 9.2.2 Wetting of the Internal Surface 147
- 9.3 Assessment of Wettability 148
- 9.3.1 Submersion Test Sinking Time or Immersion Time 148
- 9.3.2 Contact Measurement for Assessment of Wettability 149
- 9.4 Dispersing Agents 150
- 9.5 Stabilization 151
- 9.5.1 Electrostatic Stabilization 152
- 9.5.2 Steric Stabilization 153
- 9.5.3 Optimizing Electrosteric and Steric Stabilization 154
- 9.6 Surface–Anchor Interactions 154
- 9.7 Optimizing Steric Potential 155
- 9.8 Classes of Dispersing Agents 157
- 9.9 Assessment of Dispersants 159
- 9.9.1 Adsorption Isotherms 159
- 9.9.2 Measurement of Dispersion and Particle Size Distribution 160
- 9.9.3 Rheological Measurements 160
- 9.10 Application of the Above Fundamental Principles to Color Cosmetics 162
- 9.11 Principles of Preparation of Color Cosmetics 163
- 9.11.1 Dispersion/Comminution 164
- 9.11.2 Optimizing Dispersion in Practice 165
- 9.11.3 Suspoemulsions 166
- 9.12 Conclusions 167 References 167

Starch-Based Dispersions 169

Ignác Capek

Abstract 169

- 10.1 Introduction 170
- 10.2 Starch-Based Nanomaterials 177
- 10.2.1 Modification Approaches 177
- 10.2.2 Crosslinking/Gelatinization 184
- 10.2.3 Grafting 191
- 10.3 Dispersions 201
- 10.4 Nanocomposites, Blends and Their Properties 212
- 10.5 Biodegradability 225
- 10.6 Starch-AdditiveComplexes 227
- 10.7 Conclusions 235 References 241

Contents

In Vivo Skin Performance of a Cationic Emulsion Base in Comparison 11 with an Anionic System 247 Slobodanka Tamburic

Abstract 247

- 11.1 Introduction 247
- 11.2 Materials and Methods 249
- 11.2.1 Materials 249
- 11.2.2 Methods 251
- 113 Results and Discussion 252
- 11.4 Conclusion 256 References 256
- 12 The Impact of Urea on the Colloidal Structure of Alkylpolyglucoside-Based Emulsions: Physicochemical and In Vitro/In Vivo Characterization 259 Snezana Savic, Slobodanka Tamburic, Biljana jancic, jela Milic,

and Gordana Vuleta

Abstract 259

- 12.1 Introduction 260
- 12.2 Experimental 261
- 12.2.1 Materials 261
- 12.2.2 Preparation of Samples 261
- 12.2.3 Physicochemical Characterization 261
- 12.2.3.1 Microscopy 261
- 12.2.3.2 Wide-Angle X-Ray Diffraction (WAXD) 261
- 12.2.3.3 pH Measurements 262
- 12.2.3.4 Conductivity Measurements 262
- 12.2.3.5 Rheological Measurements 262
- 12.2.3.6 Thermogravimetric Analysis (TGA) 262
- 12.2.4 In Vivo Short-Term Shtdy 262
- 12.2.4.1 Study Design 263
- 12.2.5 In Vitro Release Shtdy 263
- 12.2.6 Statistical Analysis 263
- 12.3 Results and Discussion 264
- 12.3.1 Physicochemical Characterization 264
- 12.4 Conclusion 273
 - References 273

x

Models for the Calculation of Sun Protection Factors and Parameters Characterizing the UVA Protection Ability of Cosmetic Sunscreens 275 Bernd Herzog

Abstract 275

- 13.1 Introduction 275
- 13.2 Basic Principle 277
- 13.3 Calculation of the Overall UV Spectrum of a Sunscreen Agent 278
- 13.4 Models for Film Irregularities 279
- **13.4.1** The Step Film Model by O'Neill 279
- 13.4.2 The Modified Version of the Step Film Model by Tunstall 282
- 13.4.3 The Calibrated Two-Step Film Model 283
- 13.4.4 The Calibrated Quasi-Continuous Step Film Model 285
- 13.4.5 The Continuous Height Distribution Model Based on the Gamma Distribution 287
- 13.4.6 Comparison of the Models 289
- 13.5 Taking Photoinstabilities into Consideration 290
- 13.6 Consideration of the Distribution of the UV Extinction in the Water and the Oil Phases of the Formulation 294
- 13.7 Calculation of UVA Parameters 297
- 13.7.1 Australian Standard 297
- 13.7.2 UVA/UVB Ratio and Critical Wavelength 297
- 13.7.3 UVA Protection Factor (UVAPF) 298
- 13.7.4 The COLIPA Method for Assessment of UVA Protection 299
- 13.8 Correlations 300
- 13.8.1 Correlation of *In Vivo* SPF Data with SPF Calculations Using the Quasi-Continuous Step Film Model 300
- 13.8.2 Correlation of In Vivo UVAPF Data with UVAPF Calculations 302
- 13.9 Conclusion 305 References 305

Index 309