Contents

Chapter 1 Introduction

1.1	The Need for Alternative Solvents	1
1.2	Safety Considerations, Life Cycle Assessment and	
	Green Metrics	4
	1.2.1 Environmental, Health and Safety (EHS)	
	Properties	4
	1.2.2 Life Cycle Assessment (LCA)	5
	1.2.3 Solvents in the Pharmaceutical Industry	
	and Immediate Alternatives to Common	
	Laboratory Solvents	12
1.3	Solvent Properties Including Polarity	14
1.4	Summary	20
Refe	erences	21

Chapter 2 'Solvent free' Chemistry

2.1	Introd	luction		23
2.2	Chemical Examples		25	
	2.2.1	Inorgan	ic and Materials Synthesis	25
	2.2.2	Organic	c Synthesis	27
		2.2.2.1	Enantioselective Catalysis	36
		2.2.2.2	Microwave assisted Reactions	39
		2.2.2.3	Photoreactions	39
2.3	Summ	nary and	Outlook for the Future	39
Refe	erences			41

RSC Green Chemistry Book Series

Alternative Solvents for Green Chemistry

By Francesca M. Kerton

© Francesca M. Kerton 2009

Published by the Royal Society of Chemistry, www.rsc.org

Chapter 3 Water

3.1	Introc	luction		44
	3.1.1	Biphasi	c Systems	46
3.2	Chem	ical Exan	nples	49
	3.2.1	Extracti	ion	49
	3.2.2	Chemic	al Synthesis	51
		3.2.2.1	Metal-mediated and Catalysed	
			Reactions	54
		3.2.2.2	Microwave Assisted Reactions	56
		3.2.2.3	Biocatalysis	57
		3.2.2.4	Carbon Dioxide Fixation	58
	3.2.3	Materia	ls Synthesis	60
3.3	High	Femperat	ure, Superheated or Near Critical Water	63
3.4	Summ	ary and	Outlook for the Future	64
Ref	erences	•		65

Chapter 4 Supercritical Fluids

4.1	Introc	luction		68
4.2	Chem	ical Exan	nples	71
	4.2.1	Supercr	itical and Liquid Carbon Dioxide	71
		4.2.1.1	Solubility in Supercritical Carbon	
			Dioxide	71
		4.2.1.2	Extraction	74
		4.2.1.3	Chemical Synthesis	76
		4.2.1.4	Materials Synthesis and Modification	82
	4.2.2	Supercr	itical Water and Near Critical Water	84
		4.2.2.1	Extraction and Analytical Chemistry	84
		4.2.2.2	Chemical Synthesis	86
		4.2.2.3	Materials Synthesis	89
		4.2.2.4	Supercritical Water Oxidation	
			(SCWO)	90
4.3	Summ	ary and	Outlook for the Future	91
Refe	erences	-		92

Chapter 5 Renewable Solvents

5.1	Introc	luction	97
5.2	Chemical Examples		
	5.2.1	Alcohols including Glycerol	100
	5.2.2	Esters	103
		5.2.2.1 Biodiesel	105
	5.2.3	2-Methyltetrahydrofuran (2-MeTHF)	108
	5.2.4	Terpenes and Plant Oils	109
	5.2.5	Renewable Alkanes	113

Contents

5.2.6 Ionic Liquids and Eutectic Mixtures Prepare	d
from Bio-Feedstocks	114
5.3 Summary and Outlook for the Future	115
References	116

Chapter 6 Room Temperature Ionic Liquids and Eutectic Mixtures

6.1	Introc	luction	118
6.2	Chem	ical Examples	123
	6.2.1	Extractions using RTILS	123
	6.2.2	Electrochemistry in RTILS	125
	6.2.3	Synthesis in RTILS	126
		6.2.3.1 Biocatalysis in RTILs	131
		6.2.3.2 Polymer Synthesis and Processing	132
	6.2.4	Selected Unconventional Uses of RTILs	136
6.3	Summ	ary and Outlook for the Future	138
Refe	erences	-	138

Chapter 7 Fluorous Solvents and Related Systems

7.1	Introdu	ction	143
	7.1.1 0	Overview of Fluorous Approach	143
	7.1.2	Fluorous Solvent Polarity Data, Solubility	
	2	and Miscibility Data	145
	7.1.3 I	Fluorous Catalysts and Reagents	149
7.2	Chemica	al Examples	150
	7.2.1 I	Fluorous Extractions and Fluorous Analytical	
	(Chemistry	150
	7.2.2	Fluorous Reactions	152
	7.2.3 I	Fluorous Biphase Catalysis	153
	,	7.2.3.1 Continuous Fluorous Biphase	
		Catalysis	160
	7.2.4 I	Fluorous Biological Chemistry and	
	J	Biocatalysis	162
	7.2.5 I	Fluorous Combinatorial Chemistry	164
	7.2.6 Fl	uorous Materials Chemistry	166
7.3	Summar	ry and Outlook for the Future	167
Refe	rences		167

Chapter 8 Liquid Polymers

8.1	Introd	luction	170	
	8.1.1	Properties of Aqueous PEG Solutions	170	
8.2	Chemi	Chemical Examples		
	8.2.1	PEG and PPG as Non-volatile Reaction Media	173	
		8.2.1.1 PEG as a Reaction Solvent	174	

		8.2.2	Poly(dimethylsiloxane) as a Non-volatile	
			Reaction Medium	182
	8.3	Summ	ary and Outlook for the Future	185
	Refe	erences	-	186
Chapter 9	Tun	able and	I Switchable Solvent Systems	
	9.1	Introd	luction	188
	9.2	Chem	ical Examples	189
		9.2.1	Gas Expanded Liquids	189
			9.2.1.1 Solvent Properties of CXLs	190
			9.2.1.2 Applications of CXLs	191
		9.2.2	Solvents of Switchable Polarity	193
		9.2.3	Switchable Surfactants	197
		9.2.4	Solvents of Switchable Volatility	199
		9.2.5	Thermomorphic and Related Biphasic	
			Catalysis	201
	9.3	Summ	ary and Outlook for the Future	202
	Refe	erences	-	202
Chapter 10	Indu	strial C	ase Studies	
		-		

10.1	Introc	luction	204
10.2	Select	ed Applications: Examples	205
	10.2.1	Water as a Solvent and Reaction Medium	206
	10.2.2	Carbon Dioxide as a Solvent and	
		Reaction Medium	210
	10.2.3	RTILs in Industry	214
10.3	Summ	nary and Outlook	215
Refe	rences		216
ex			218

Subject Index