Contents

Preface

G	lassar v	vii
1	Introduction	1
	 1.1 Introduction and background 1.2 Survey of combustion phenomena 1.3 Summary of principles and overview of applications 1.4 The nature of hydrocarbon and other fuels/ Further reading 	1 2 4 5 9 y
2	Physicochemical principles,	10
	 2.1 Introduction 2.2 Thermodynamics of combustion 2.1 Energy of reaction and overall heat release 2.2 Adiabatic temperature rise and evaluation of heat capacities 2.3 Extent of reaction and determination of chemical equilibrium 2.3 Reaction rate, kinetic rate laws and order of reaction 2.3.2 Concentration dependences in global and elementary reaction rate expressions 2.3.3 Temperature dependence of the rate constant 2.3.4 Termolecular reactions and elements of chain reaction mechanisms 2.4 Transport properties of gases 2.5 Grouping of parameters and dimensionless groups 	10 10 13 15 18 18 19 21 22 24 26 26 26 27
3	Flames	30
	 3.1 Introduction 3.2 Mass and energy conservation in premixed flames 3.3 Structure of the ideal, adiabatic, one-dimensional, premixed flame 3.4 Properties of laminar, premixed flames 3.5 Flammability limits 3.6 Flame quenching 3.7 Stabilisation of flames on burners 3.8 Flame stabilisation at high velocity 3.9 Diffusion flames: properties and chemical background 3.10 Recent developments in experimental methods for the study of flames 3.10.1 Background principles of laser diagnostics 3.10.2 Laser-induced fluorescence 3.10.3 Coherent anti-Stokes Raman spectroscopy (CARS) 3.10.4 Planar imaging techniques Further reading Problems 	30 30 32 34 35 36 37 42 43 47 49 50 51 51 52 53
4	Flame theory and turbulent combustion	54
	4.1 Introduction4.2 Foundations of wave propagation theory	54 54

- 4.2.1 Diffusional propagation of travelling wavefronts
- 4.3 Non-isothermal wave, or flame propagation
- 4.4 A unifying theme for chemical kinetic/fluid dynamic interactions
 - 4.5 Flame stretch and flame stretch rates in laminar flames
 - 4.5.1 Dependences of the propagation of stretched flames on L
 - 4.6 Laminar flamelet concepts in premixed turbulent combustion
- 4.7 Correlation of measured burning velocities and turbulence intens
- 4.8 Theory of turbulent diffusion flames

Further reading

Problems

5 Detonations

- 5.1 Introduction
- 5.2 Shock waves
- 5.3 Application of shock tubes in kinetic and combustion studies
- 5.4 One-dimensional structure of detonation waves
- 5.5 Mathematical treatment of detonation
- 5.6 Three-dimensional structure of detonations

5.7 Initiation of detonation and the deflagration to detonation transit Further reading

- Problems
- 6 High temperature and flame chemistry (T > 1000 K)
 - 6.1 Background and kinetic overview
 - 6.1.1 Relative rates of elementary reactions
 - 6.2 Mechanisms of alkane oxidation
 - 6.2.1 Principal propagating free radicals and reactions
 - 6.3 Mechanisms of aromatic hydrocarbon oxidation
 - 6.4 The relevance of reactions in hydrogen and carbon monoxide oxid6.4.1 Foundation to the combustion of hydrogen
 - 6.4.2 The oxidation of carbon monoxide
 - 6.5 Relationship between high temperature chemistry and the spatial s of premixed flames
 - 6.6 Light emission from flames
 - 6.7 Ionisation processes
 - 6.7.1 Mechanisms of ion formation in flames
 - 6.7.2 Aerodynamic effects and applications of ion formation in fl
 - 6.8 Soot formation in flames
 - 6.8.1 The nature of soot
 - 6.8.2 Conditions for soot formation
 - 6.8.3 Gas-phase mechanisms leading to soot formation
 - 6.8.4 The condensed phase of soot formation
 - 6.8.5 Fullerenes
 - 6.9 Diamond synthesis in flames

Further reading

Problems

7 Low temperature chemistry (T < 1000 K)

- 7.1 Introduction and background
- 7.2 The oxidation of methane
- 7.3 An overview of the oxidation of higher alkanes and other organic compounds
- 7.4 Alkylperoxy radical formation and isomerisation
- 7.5 Extent of reaction and the negative temperature dependence of reaction rate
- 7.6 Alkene formation from alkylperoxy radicals

	 7.7 Reactions of other species 7.7.1 Alkoxyl radicals 7.7.2 Aldehydes and their derivatives 7.7.3 Toluene and other aromatics Further reading Problems 	141 141 141 142 142 143
8	Thermal ignition	145
	 8.1 Introduction 8.2 Thermal ignition theory 8.2.1 Heat release rate dependences as criteria for spontaneous ignition 	145 145 145
	8.2.2 Vessel temperature and heat loss rate as criteria for spontaneous ignition	150
	 8.2.3 Summary of conditions for thermal ignition to be possible 8.3 Analytical interpretation of criteria for thermal ignition 8.4 Frank-Kamenetskii theory for internal distributed temperatures 8.5 Combustion of particulate and fibrous materials in storage or transport 8.6 Asymmetric heating and initiation by hot spots Further reading Problems 	152 152 157 159 161 161 161
9	Isothermal chain branching and chain-thermal interactions	163
	 9.1 Introduction 9.2 Kinetics and mechanisms of chain branching reactions 9.2.1 A formal analysis of isothermal chain branching 9.3 Quadratic chain branching with reactant consumption 9.4 Relationships between thermal and isothermal branching chain ignition theories 	163 163 165 169 170
	 9.5 Spontaneous ignition of hydrogen + oxygen 9.5.1 (<i>p</i>-<i>T</i>_a) ignition boundaries and their kinetic origins 9.5.2 Kinetic models for oxidation in the vicinity of the ignition limits 9.6 Carbon monoxide oxidation and ignition 9.7 Spontaneous ignition and oscillatory cool flames of hydrocarbons Further reading Problems 	172 172 177 178 181 185 185
10	Ignition, extinction and oscillatory phenomena	188
	 10.1 Introduction and background 10.2 Combustion in a CSTR 10.2.1 Adiabatic operation 10.2.2 Non-adiabatic operation 10.3 Exothermic oxidation at a surface 10.4 Unifying links between thermal ignition, reaction in a CSTR and at surface 	188 188 190 192 196 199
	 10.5 The interpretation of oscillatory cool flames and multiple-stage ignitions 	200
	Further reading Problems	204 204
11	Aspects of mixed and condensed phase combustion	206
	11.1 Introduction 11.2 The burning of a liquid droplet r_{f} 11.2.1 Diffusion of oxygen outside the flame front 11.2.2 Heat balance at $r < r_{f}$	206 206 208 209

ห้องสมุดกรมจิทยาศาสตร์บริการ

- 11.2.3 Heat balance at $r > r_f$
- 11.2.4 An expression for the flame temperature, $T_{\rm f}$
- 11.2.5 An expression for the burning rate constant, $k_{\rm b}$
- 11.2.6 Droplet combustion in heavy oil burners
- 11.3 Pool fires
- 11.4 Heterogeneous combustion of coal and carbonaceous chars
- 11.5 Practical applications of particulate or solid combustion
 - 11.5.1 Pulverised coal burners and cyclone furnaces
 - 11.5.2 Solid fuel beds
 - 11.5.3 Fluidised-bed combustion

Further reading

Problems

12 Combustion hazards

- 12.1 Introduction
- 12.2 Minimum autoignition temperature of gases or vapours of volatile liquids
- 12.3 Flammability limit, flash point and fire point of vapours
- 12.4 Minimum ignition energy
- 12.5 Large-scale explosion of gases and vapours
- Mitigation of confined explosions 12.6
- 12.7 Dust explosions
- 12.8 Laser initiation of ignition
- 12.9 Smouldering combustion
- 12.10 Firespread
- 12.11 The combustion of polymers
- 12.12 Fire extinguishing agents
- Further reading

Problem

13 Internal combustion engines and fuels

- 13.1 Introduction
- 13.2 Spark ignition (s.i.) engines
 - 13.2.1 Principles of operation, design and performance
 - 13.2.2 Lean burn and stratified charge
 - 13.2.3 'Engine knock' and fuel octane rating
 - 13.2.4 Reformulated gasolines
 - 13.2.5 The optimisation of combustion
- 13.3 Diesel engine combustion and fuels
 - 13.3.1 Principles of operation, design and performance
 - 13.3.2 Fuel injection and combustion processes /13.3.3 Composition of diesel fuels and their characterisation
- 13.4 Alternative fuels for spark ignition and diesel engines
- 13.5 Gas turbine, turbojet and ramjet engines

13.5.1 Design and performance considerations of gas turbines 13.5.2 Gas turbine fuels

Further reading

14 Combustion and the environment

- 14.1 Introduction
- 14.2 Reactions of pollutants in the atmosphere
 - 14.2.1 Photochemical smog
 - 14.2.2 Airborne sulphur emissions
 - 14.2.3 Destruction of the ozone layer
 - 14.2.4 The 'greenhouse' effect
- 14.3 Combustion-generated pollutants from engines

14.3.1 Carbon monoxide	273		
14.3.2 Nitrogen oxides	275		
14.3.3 Unburned hydrocarbons	276		
14.3.4 PAH, smoke and particulates	277		
14.4 Measurements of exhaust emissions	279		
14.5 Suppression of pollutants from s.i. engines	280		
14.6 Emissions from natural gas fired systems	283		
14.7 Emissions from liquid hydrocarbons and solid	fuel combustion 285		
14.8 Quantifying gaseous emission's	. 286		
Further reading	287		
Answers to problems with numerical solutions			
References			
	301		

.