Contents

Preface

Preface to the First Edition		vii
Chapter 1	INTRODUCTION	
1–1	Objectives of Chemical Thermodynamics	
1–2	Limitations of Classical Thermodynamics	3
Chapter 2	MATHEMATICAL APPARATUS	6
2–1	Variables of Thermodynamics	7
2-2	Theoretical Methods	8
2–3	Practical Techniques	17
Chapter 3	THE FIRST LAW OF THERMODYNAMICS	33
3–1	Definitions	33
3–2	Energy: The First Law of Thermodynamics	41
3–3	Some Conditions under which W or Q Depends Only	
	on Initial and Final States	43
3-4	Alternative Statement of the First Law of	
	Thermodynamics	46

- 5-1 Definitions and Conventions
- 5-2 Additivity of Heats of Reaction
- 5-3 Bond Energies
- 5-4 Heat of Reaction as a Function of Temperature

Chapter 6 APPLICATION OF THE FIRST LAW TO GASES

- 6-1 Ideal Gases
- 6-2 Real Gases

Chapter 7 THE SECOND LAW OF THERMODYNAMICS

7–1	The Need for a Second Law	1	96
7–2	The Nature of the Second Law		[.] 97
7–3	The Definition of S, the Entropy of a System		100
7_4	The Proof that S is a Thermodynamic Property		102
75	Alternative Statement of the Second Law of		
	Thermodynamics		116
7–6	Entropy Changes in Reversible Processes		117
7–7	Entropy Changes in Irreversible Processes		120
78	Entropy as an Index of Exhaustion		128
7-9	General Equations for the Entropy of Gases		131
7–10	Temperature Scales		133
7–11	Temperature-Entropy Diagram		136
Chapter 8	THE FREE-ENERGY FUNCTIONS		142
8–1	Purpose of the New Functions		142
8-2	Definitions		143
8–3	Consequences of Definitions and Derived Relation	S	143
8-4	Criteria of Nature of Chemical Change		147

- **8–4** Criteria of Nature of Chemical Change 8-5 Free Energy and the Equilibrium Constant 152 . 8-6 Useful Work and Free Energy 159

÷ -

Chapter 10 APPLICATION OF FREE ENERGY TO CHEMICAL REACTIONS

101	Addition of Known ΔG° 's for Suitable Chemical Equations Leading to the Desired Equation	185
10-2	Determination of ΔG° from Equilibrium Measurements	185
103	Determination from Measurements of Electromotive	
	Force	189
10-4	Calculation from Thermal Data and the Third Law of Thermodynamics	
10–5	Calculation from Spectroscopic Data and Statistical Mechanics	
Chapter 11	THE THIRD LAW OF THERMODYNAMICS /	
11-1	Purpose of the Third Law	193
11–2	Formulation of the Third Law	195

11-3Thermodynamic Properties at Absolute Zero20211-4Tables of Entropies at 298°K204

Chapter 12STANDARD FREE ENERGIES FROM THE
THIRD LAW22212-1Precise Methods22212-2Approximate Methods226

THERMODYNAMICS OF SYSTEMS OF VARIABLE COMPOSITION

Chapter 13	PARTIAL MOLAL QUANTITIES	241
13-1	Need for a New Function in Dealing with Solutions	241

Chapter 14 ENTHALPY IN SYSTEMS OF VARIABLE COMPOSITION

14–1	Definitions	271
14-2	Differential Heat of Solution	275
14-3	Integral Heat of Solution	278
14-4	Integral Heat of Dilution	280
14–5	Determination of Partial Molal Enthalpies from	
	Calorimetric Measurements	

Chapter 15 FREE ENERGY IN SYSTEMS OF VARIABLE / COMPOSITION: FUGACITY 292

15–1	Dependence of Free Energy on Composition	292
15–2	Escaping Tendency	295
15–3	The Fugacity Function	299

Chapter 16THE FUGACITY OF GASESV30516-1Calculation of the Europeity of a Real Cas305

10-1 Calculation of the rugacity of a Real	Gas 305
16-2 Joule-Thomson Effect for a van der W	Vaals Gas 314
16–3 Solutions of Real Gases	317

Chapter 17 THE IDEAL SOLUTION

17–1	Definition	322
17–2	Some Consequences of the Definition	323
17–3	Thermodynamics of Transfer of Component from	
	One Solution to Another	325
17-4	Thermodynamics of Mixing	327
17–5	Equilibrium between a Pure Solid and an Ideal Liquid	
•	Solution	329

Chapter 19	ACTIVITY OF NONELECTROLYTES:	
19–1	Definitions	347
19 2	Choice of Standard States	
19–3	General Relation between Equilibrium Constant	
	and Free Energy	358
19-4	Dependence of Activity on Pressure	359
195	Dependence of Activity on Temperature	360
19–6	Standard Entropy	
19–7	Deviations from Ideality in Terms of Excess Ther-	
Chapter 20	DETERMINATION OF ACTIVITY OF NONELECTROLYTES	200
201	Measurements of Vapor Pressure	
20-2	Distribution of Solute between Two Immiscible	
No Na s	Solvents	372
20-3	Measurements of Electromotive Force	~~ ·
20-4	Determination of the Activity of One Component	
	from Known Values of the Activity of the Other	377
20_5	Measurements of Freezing Points	
Chapter 21	ACTIVITY AND ACTIVITY COEFFICIENTS: STRONG ELECTROLYTES	300
21–1	Definitions and Standard States for Dissolved	
	Electrolytes	386
21-2	Determination of Activities of Strong Electrolytes	397

at a Anti-iter Coefficients of Some Strong Electrolytes 415

-

Chapter 23 CONCLUDING REMARKS

Appendix: Answers to Selected Problems

Index