CONTENTS

PART I

SELECTED ANALYTICAL STUDIES ON EXPLOSIONS, DETONATIONS, FLAMMABILITY LIMITS, AND IGNITION OF GASES, AND ON HETEROGENEOUS BURNING

CHAPTER I. FUNDAMENTALS OF AEROTHERMOCHEMISTRY	PAGE
1. Explosions and Detonations	5
2. Homogeneous Gas Reactions in Isothermal Systems	5
A. Interdependent Chemical Reactions	6
B. Chain Reactions	7
3. Heterogeneous Chemical Reactions	7
A. Physical Adsorption and Chemisorption	7
B. Langmuir Adsorption Isotherm	8
C. Surface Reactions	8
4. Conservation Equations and the Shvab-Zeldovich Procedure	9
A. Conservation Equations	9
B. Uniform Representation of the Conservation of Mass and Energy	
Equations for One-step Chemical Reactions	11
C. Classical Solution of Diffusion-flame Problems	13
D. Complete Solution for Initially Unmixed Gases with Finite Reaction Rates	14
E. Critique of Shvab–Zeldovich Procedure	14 14
-	·
5. Transport Coefficients	15
CHAPTER II. ELEMENTARY THEORY OF EXPLOSION LIMITS FOR PREMIXED GASES IN CLOSED VESSELS WITHOUT SUR- FACE REACTIONS	
6. Thermal and Branched-chain Explosions	17
7. The Semenov Theory of Explosion Limits	17
8. Formal Description of Chain Reactions Involving a Single Chain	
Carrier	18
9. Chemical Reactions Which are of Zero or First Order With Respect	
to the Chain Carrier M_F	20
A. Chain Carrier Concentration as a Function of Time	21
B. Definitions of Various Physically Meaningful Parameters	22
C. Induction Period	22
D. Concentration of Reaction Products and Measurement of Induc-	
tion Period E. Definition of Chain Length for Non-exploding Mixtures	23
	24
10. Comparison of the Detailed Theory with the Theory of Semenov	24

a,

1

	AND EXPLOSION LIMITS IN CLOSED REACTION VESSELS	
	11. A Qualitative Description of Explosion Limits in Hydrogen–Oxygen Mixtures	26
	12. Experimental Procedures	28
	13. Qualitative Description of Explosion Limits for Various Gas Mixtures	28
	CHAPTER IV. THE QUANTITATIVE THEORY OF CHAIN REACTIONS IN CLOSED VESSELS	
	14. Introductory Remarks	31
	15. Explosions in Which Only Homogeneous Gas Reactions Occur	
	16. Steady-state Processes with a Single Overall Rate-controlling Reaction	34
	17. Non-steady Processes with a Single Overall Rate-controlling Reaction	35
	18. Introduction to the Study of Explosion Limits with Surface Reactions	36
	19. The Mathematical Theory of Isothermal Explosion Limits	36
	CHAPTER V. DETONATION WAVES IN GASES	
	20. Steady One-dimensional Flow for Premixed Gases with Heat Release	41
	21. Characteristic Thermodynamic and Chemical Reaction Times	43
	A. Slow Chemical Reactions, Moderate or High Flow Velocities $(\alpha \ll 1, M^2 \sim 1)$	45
	B. Slow Chemical Reactions and Low Flow Velocities ($\alpha \ll 1$, $\alpha/M^2 \sim 1$)	46
	22. Steady One-dimensional Flow with Heat Addition	46
	23. The Rankine-Hugoniot Curve	47
	24. The Chapman–Jouguet Point for Detonation	49
	A. Instability of Strong Detonations	49
	B. Weak Detonations	50
	C. The Brinkley–Kirkwood Stability Arguments D. Physical State of the Gas at the Chapman–Jouguet Point	50 51
	E. Thermodynamic Arguments	52
	25. The Theoretical Calculation of Detonation Velocities	53
*	26. The von Neumann-Döring-Zeldovich (NDZ) Model of the Structure of the One-dimensional Detonation Wave	56
	A. One-dimensional, Compressible, Inviscid Flow Neglecting	
	Diffusion and Heat Conduction	57
	27. The Detailed Structure of a Detonation Wave	62
	28. Transition from Deflagration to Detonation	63
	29. Limits of Detonability; Spinning Detonation	64
	A. Limits of Detonability B. Spinning Detonations	64 65
	30. Spherical and Oblique Detonation Waves	67
	31. Miscellaneous Observations and Recent Contributions	68
	vi	

ŝ,

33. Determination of Measured Flammability Limits and Flame Quench-	
ing from Measured Burning Velocities	79
A. Convective Heat Losses and Quenching Limits	80
B. Radiative Heat Losses and Flammability Limits	82
C. Concluding Remarks	83

. .

1

20

CHAPTER VII. PRINCIPLES OF IGNITION

 Spark Ignition of Stagnant Gases A. An Integrated Form of the Energy Equation for One-dimensional, Constant-pressure, Wave Propagation B. Critical Dimension of a Slab of Burnt Gas for Producing a One- 	85 85
dimensional Combustion Wave	86
C. Minimum Ignition Energies	88
D. Ignition Delay and the Mechanism of Ignition Processes	91
35. Spark Ignition of Flowing Gases	91
A. Ignition of Gases in Laminar Flow	92
B. Ignition of Turbulent Gases	92
C. Ignition Energy and Total Energy Input	93
D. Correlation of Data	93
36. Ignition of Stagnant Gases at Heated Surfaces	93
37. Ignition of Gases in a Laminar Mixing Zone	94
A. The Boundary-layer Approximation for Steady Two-dimensional Flow Problems	
B. Similarity Principles for Lewis Number of Unity	94
C. The Howarth Transformation	96 97
D. Ignition of Combustible Gases by Heated Gases in a Laminar	97
* Mixing Zone	97
E. Diffusion Flames	97 98
F. Shear-Flow	99
	33
38. Ignition of Flowing Gases at Heated Surfaces	99

CHAPTER VIII. DROPLET BURNING AND HETEROGENEOUS COM-BUSTION

39. The Theory for the Burning of Single Droplets for Lewis Number of	
A. Conventional Diffusion Flame Approximation for La	101 101
B. A Similarity Solution for Droplet Burning C. Concluding Remarks	102
C. Concluding Remarks	106

40. Spray Combustion

vii

106

EXPERIMENTAL AND THEORETICAL STUDIES OF FLAMMABILITY, IGNITIBILITY AND EXPLOSION PREVENTION

CHAPTER IX. FLAMMABILITY LIMITS OF HOMOGENEOUS FUEL- Oxidant Mixtures	PAGE
41. The Concept of Flammability	112
A. Flammability	112
B. "Standard" Flammability Apparatus	113
C. Flammability Limits	115
42. Types of Limits	117
43. Factors Affecting Limits	120
A. Pressure	120
B. Temperature	121
C. Vessel Diameter	122 123
D. Vessel Length	123
E. Direction of Flame Propagation F. Turbulence	123
44. Calorific Value Correlations	124
45. Weak-limit Flame Temperatures	126
46. Special Phenomena	127
A. Carbon Monoxide	127
B. Hydrogen	127
C. Effect of Water Mist on Rich Mixtures	127
D. Cool Flames	127 129
E. Two-lobe Flammability Diagrams F. Effect of Fine Solid Particles	129
F. Effect of Fine Solid Particles	125
Chapter X. Flammability Limits of Homogeneous Fuel-	
DILUENT-OXIDANT MIXTURES	يە
47. G. W. Jones's Graphical Estimation of Limits	134
48. Graphical Methods of Presentation	135
49. Flame Temperatures at Limits	138
50. Combustion with Recirculation	143
51. Successive Combustion	145
52. Flammability Data	147
Chapter XI. Flash-points	
CHAFIER 2X1, I LASH-FOINTS	

for the

57. Homodisperse Mists	166
58. Heterodisperse Sprays	169
59. Foams	170
60. Dusts	171
۶	
CHAPTER XIII. SPARK IGNITION	
61. Types of Spark	175
62. Minimum-ignition-energy Apparatus	176
63. Factors Affecting Minimum Spark-ignition Energies	176
A. Mixture Strength	176 177
B. Electrode Spacing C. Electrode Material and Configuration	178
D. Electrical Properties of the Spark	179
E. Fuel Type	180
F. Pressure	181
G. Temperature	184
H. Diluents	185
64. Spark Ignition of Flowing Gases	187 187
A. Effect of Velocity B. Effect of Turbulence	188
C. Combustion Chamber Ignition	188
C. Combuston chamber Ignition	
CHAPTER XIV. SPONTANEOUS IGNITION	
65. Fundamental Notions	192
66. Experimental Techniques	193
67. High Temperature Ignition Delay Data	197
68. Engine Applications	209
CHAPTER XV. COMBUSTION PROCESSES	
	218
69. Chemical Principles	
70. Combustion Fundamentals	222
71. Turbulent Combustion	224
CHAPTER XVI. EXPLOSION PREVENTION BY ADDITION OF WATER AND/OR AIR	
72. Introduction	230
73. Criterion of Limiting Explosibility	231
74. Addition of Water and/or Air	231
A. Calculation of Air and Water Diluent Quantities	231
B. Weak Mixtures	232
C. Rich Mixtures	234
D. A Note on Water Vapour Addition	235

ix

. *

76. Calculation of Limiting Explosibility with Partial	
Cooling by a Heat Exchanger	239
A. Atmospheric Pressure	239
B. Sub-atmospheric Pressures	242
77. Use of Water Alone	247
A. Monodisperse Mists	247
B. Heterodisperse Sprays	249
78. Estimation of Limiting Safe Fuel-Air Ratios at Various	
Temperatures and Pressures	
remperatures and ressures	255
N	-
CHAPTER XVII. EXPLOSION PREVENTION BY OTHER M	leans
79. Addition of Other Substances	259
A. Inert Gases	259
B. Aqueous Foam	259
C. Organic Halides	
D. Inert Dust	261
	.264
80. Use of Flame Arresters	267
81. Use of Explosion Vents	270
NAME INDEX	275
SUBJECT INDEX	283

ACKNOWLEDGEMENTS

THE following acknowledgements are additional to those made in the General Introduction.

For granting permission to reproduce various tables and figures, we wish to thank the authors and publishers of the journals and books concerned, for example, the following gentlemen: H. Billett, R. S. Brokaw, J. H. Burgoyne and co-workers, H. F. Calcote, J. T. DiPiazza, G. von Elbe, J. B. Fenn, R. P. Fraser, M. Gerstein, J. O. Hirschfelder and co-workers, J. L. Jackson, Th. von Kármán, J. G. Kirkwood, P. Laffitte, J. W. Linnett, B. Lewis and co-workers, P. Lloyd, J. P. Longwell and co-workers, R. E. Miller, T. W. Reynolds, R. F. Simmons, A. E. Spakowski, E. S. Starkman, C. C. Swett Jr., Y. Tanasawa, D. T. A. Townend, E. A. Watson, H. G. Wolfhard, W. W. Wood, M. G. Zabetakis; we also thank the following organizations: Academic Press Inc., American Chemical Society, American Institute of Physics, American Society of Mechanical Engineers, Butterworths Scientific Publications Ltd., Combustion Institute, Controller of H.M. Stationery Office (Figs. 77.3 and 79.1–79.5), Department of Scientific and Industrial Research and Fire Offices' Committee, Institution of Mechanical Engineers, Institute of Petroleum, Reinhold Publishing Corpn., Royal Society, John Wiley & Sons, and Williams & Wilkins Co.

÷.

B. P. M. S. S. P.