CONTENTS

	Preface	xi
ONE	Fundamentals of Ion Exchange	1
	A. Versatility of Ion-Exchange Materials	1
	B. The Chemical Nature of Ion Exchangers	2
	C. Chemical Formulas for Ion-Exchange Resins	5
	D. Physical Properties of Ion-Exchange Resins	6
	1. Particle Size and Form	6
	2. Swelling and Porosity	8
	3. Crosslinkage	8
	E. Chemical Properties of Ion-Exchange Resins	9
	1. Equivalency of Ion-Exchange Reactions	9
	2. Capacity of Exchangers	10
	3. Selectivity of the Resins for the Counter-Ion	10
	4. Stability	12
	F. Mechanisms of Ion-Exchange Reactions	12
	1. Ion-Exchange Equilibria	12
	2. The Donnan Membrane Theory	13
	3. Application of the Law of Chemical Equilibrium	
	to Ion-Exchange Reactions	17
	4. The Rate of Ion-Exchange Reactions	22
	References	22

TWO Ion-Exchange Processes: Batch and Column Techniques Plate Theory of Chromatography

- A. Definition and Symbols Used in This Chapter
- B. Basic Operations
- C. Details of the Batch Method
- D. The Column Method
 - 1. General Considerations
 - 2. Frontal Development
 - 3. Displacement Development
 - 4. The Breakthrough Technique
 - 5. Elution Analysis
- E. The Plate Theory
 - 1. General Comments
 - 2. The Discontinuous Approach
 - 3. Representation of the Elution Curve as a Gaussian Error Function
 - 4. Methods of Determining the Number of Plates in a Column
 - 5. The Concept of the Plate Theory as a Continuous Process
- 6. Parameters that Affect the Performance of a Column References

THREE Selecting the Proper Ion-Exchange Material

- A. Preliminary Considerations
 - 1. Limitation of Ion-Exchange Materials to Four Classes
 - 2. Selecting the Exchanger by a Process of Elimination
 - a. Selection based on the net charge of a solute
 - b. Selection based on the size and net charge of a solute
 - c. Selection based on the chemical and physical environment of a solute
- B. The Ion-Exchange Resins
 - 1. Trade Names, Manufacturers, and Suppliers
 - 2. Terminology
 - a. Particle size
 - b. Per cent crosslinkage and capacity
 - c. The ionic form of an exchanger
 - d. Formulary
 - 3. Chemical and Physical Stability
- C. Ion-Exchange Celluloses
 - 1. Fibrous Cellulosic Exchangers
 - 2. Microgranular Cellulosic Exchangers
 - 3. Choice of the Exchanger Type
- D. Ion-Exchange Dextrans and Polyacrylamide Gels

	(Contents	vii
	1. The Gel Matrix		71
	2. Preparation		72
	3. Some General Characteristics of the Gel-Exchange	rs	74
	4. Selecting the Type of Gel Exchanger		75
	E. Inorganic Ion Exchangers		76
	1. The Rebirth of Inorganic Ion-Exchange Materials		76
	2. Hydrous Oxide Exchangers		77
	3. Acid Salt Exchangers		78
	4. Heteropoly Acid Salts		79
	5. Metal Sulfides		79
	6. Inorganic Phosphate Gel		80
	F. Missellaneous Ion-Exchange Materials		80
	1. Some Lesser Used Resinous Exchangers		80
	2. Pellicular Ion Exchangers		81
	G. Ion-Exchange Literature		81
	1. Books		81
	2. Handbook		82
	3. Reviews		83
	4. Journals References		83
	References		84
FOUR	Laboratory Columns and Accessories:		
	Operational Techniques		86
	A. The Chromatographic Assembly		86
	B. Chromatographic Columns		87
	1. Column Shape; Length to Diameter Ratio		87
	2. Column Types		88
	3. Packing the Column		89
	a. Multistage batch-packing		93
	b. Single-stage batch-packing		93
	c. Single-stage pump-packing		93
	C. Line Connections from One Accessory to Another		95
	D. Apparatus for Delivering the Eluent to the Column		96
	E. Detection Devices and Techniques		102
	F. Control of Liquid Flow Through the Column Assemb	oly	104
	G. Fraction Collectors		105
	H. Operation of the Chromatographic Assembly		108
	References		109
FIVE	Ouantitation of Elution Curves		111
	A. Analysis of Individual Fractions		111
	B. Analysis of Automatically Plotted Elution Curves		111
		lea.	112
	1. Methods of Obtaining the Area Under Elution Pea	.K\$	112

- a. Geometrical integration
- b. Other lesser used methods
- 2. Conversion of Peak Area to Amount of Solute
 - a. Direct relation of peak area to sample composition
 - Conversion of peak area into weight or moles of substance through response factors
 - Conversion of peak area into quantity of substance through extinction coefficients
- C. Constancy of Operating Conditions
 - 1. Preliminary Considerations
 - 2. Internal Standards
- D. Precision and Accuracy of the Integration Methods
- E. Resolution

References

SIX Simplification of Some Common Analytical Chemical Operations

- A. Nonchromatographic Operations
- B. Conversion of One Compound to Another
- C. The Standardization of a Salt Solution by Ion Exchange
- D. Removal of Interfering Ions
- E. Preparation of Deionized Water
- F. Purification of Organic Compounds
- G. Determination of Iodate Following Periodate Oxidation of α-Glycol Groups
- H. Catalysis
 - I. Recovery of Trace Constituents
 - Concentration of Trace Substances from Water Supplies
 - 2. Recovery of Trace Constituents in General Environmental Work
 - 3. The Isolation of Trace Elements in Food Products
 - Separation of Trace Constituents in the Ore and Metal Industries
- 5. Recovery of Solutes from Chromatographic Peaks References

SEVEN Ion-Exchange Chromatography

Part I Ion-Exchange Chromatography of Organic Substances

A. Amino Acids, Peptides, and Proteins

	Conte	nts ix
	1. Amino Acids	145
	2. Peptides and Proteins	148
	a. Separations on resinous exchangers	148
	b. Separation of peptides and proteins on cellulosic	. 10
	ion exchangers	151
	B. Separation of Carbohydrate Substances	154
	1. Neutral Carbohydrates	154
	2. Carbohydrate Derivatives	158
	C. Organic Acids	159
	1. Introduction	159
	2. Detection Methods	159
	3. Uronic and Aldonic Acids	160
	4. Other Aliphatic Carboxylic Acids '	161
	5. Separation of Aromatic Acids	162
	D. Amino Sugars	164
	E. Amines	165
	F. Separation of Cabonyl Compounds in the Presence of	
	Bisulfite C. Nardin And C.	168
	G. Nucleic Acid Components	168
	1. Brief Historical Account	168
	2. Purine and Pyrimidine Bases and Nucleosides	171
	3. Nucleoside Phosphates	175
	4. Polynucleotides5. Nucleic Acids	179
	H. Simultaneous Analysis of Different Classes of	181
	Compounds	101
	Compounds	181
Part II	Ion-Exchange Chromatography of Inorganic Substances	, 182
	A. Emergence of Ion-Exchange Elution Chromatography	•
	B. Ion Exchange-Complex Ion Interactions	182 183
	C. Classification and Comparison of Chromatographic	103
	Methods	186
	D. Separation of Inorganic Cations	186
	1. Alkali Metals	186
	2. Alkaline Earth Ions	187
	3. Transition Elements and Related Metals	193
	4. The Rare Earth Elements	195
	5. Miscellaneous Metals	197
	E. Separation of Inorganic Anions	197
	1. Separation of Chloride, Bromide, and Iodide Ions	197
	2. Chromatography of Polyphosphate Mixtures	199
	3. Separation of Hypophosphite, Phosphite,	
	and Phosphate	200
	4. Miscellaneous Other Anions	201
	References	201

x Contents

EIGHT Utilization of Ion-Exchange Resins for Partition, Salting-Out, and Ion-Exclusion Chromatography

- A. Preliminary Considerations
- B. Partition Chromatography of Carbohydrates
- C. Salting-out Chromatography
- D. Separation of Ionic Compounds by Ion Exclusion and Related Methods

References

NINE Ligand-Exchange Chromatography

- A. Description of Ligand Exchange
- B. Separation by Ligand-Exchange Chromatography
 - 1. Amphetamine Drugs
 - 2. Purine and Pyrimidine Derivatives
 - 3. Peptides and Amino Acids

References

Appendix A. Extension of the Donnan Principle

Appendix B. Determination of the Total Ion-Exchange Capacity

Appendix C. Determination of the Liquid Volume Held in an Ion-Exchange Column

Index