Contents

TTADTER

51111 1121				
1. FUNDAMENTAL PRINCIPLES AND CONVENTIONS		•	•	. 1
Reversible Cells and Potential	•			. 1
Chemical Potential and Activity	•		•	. 5
Hydrogen Ion Equilibria		•		. 11
Conventions of E.M.F. Measurements	•	•	•	. 12
2. Definitions of pH Scales				. 16
Rational Scales of Acidity				. 17
Hydrogen Ion Concentration				. 18
The Sørensen pH Scale				. 19
Hydrogen Ion Activity				. 22
Thermodynamic Scales of pH				. 24
Determination of Hydrogen Ion Concentrations by ods	E.M	[. F .	Metl	n- 28
Choice of a Standard <i>p</i> H Unit for Reference Solut	ions			28
Practical Definition of the Measured pH				31
Limitations of the pH				. 32
3. LIQUID-JUNCTION POTENTIALS AND IONIC ACTIVITIES Individual Ionic Activity Coefficients	•	• .	•	. 34 . 35
Calculation of the Liquid-Junction Potential				. 40
Elimination of the Liquid-Junction Potential				. 45
Estimation of Ionic Activity Coefficients		Ĵ.	• 9.3 S	. 48
Ionic Activities and Cells without Liquid Junction				. 52
The Residual Liquid-Junction Potential	•••			. 58
4. ESTABLISHMENT OF 2H STANDARDS	•••			62
The Standard Potential				63
The Cohn Method of pH Standardization				66
vH of Reference Solutions		•	•	
Assignment of pH Values to NBS Standards		•	•	73
Equimolal Phosphate Buffer Solutions	•	•	•	. 75
Phthalate Buffer Solutions	•	•	•,	0
Borax Buffer Solutions	•	•	•	2 00 81
Tartrate Buffer Solutions	•	•	•	. 31
Tetroxalate Buffer Solutions	•••	•	•	. 35
	-	•	•	

	Secondary Standards		•	•				
÷	Interpretation of the Practical pH							88
	The British Standard pH Scale							80
F	Demons for more than							01
э.	DUFFER SOLUTIONS	•	•	• .	• •	•	•	91
	Buffer Action	•	•	٠.		•	•	91
	The Buffer Value	•	•	•	• •	•	•	93
	Dilution Effects	•	•	•	• •	•	•	97
	Salt Effects	•	•	•	• •		•	104
	pH and Temperature	•	•	•	· .		•	108
	Effect of Pressure Changes				•			112
	Buffers for pH Control				•			113
	The NBS Standard Buffer Solutions							118
ß	OTTANTITATIVE ACTOR OF ACTOR	ъ.	atara		No			
υ.	SOLUTIONS	DA	SICH	Y IN	INO	NAQU	EOUS	122
	Concepts of Acids and Bases	•	•	•	•	••••	•	199
	Acid-Base Potentials	•	•	•	•	• •	•	199
	Ionia Processon and the Dielectric Co		•	·	•	• •	•	120
	A sidity Seeles	nsta	1110	•	•		•	104
	Actuity Scales	•		•	• •		1•	144
	Electrometric Determination of Acidi	tyn	n No	maqu	ieous	Me	dia .	190
7.	Cells, Electrodes, and Techniques				•			156
	The Hydrogen Electrode							156
	The Quinhydrone Electrode							169
	The Antimony Electrode							175
	The Glass Electrode							179
	Other Hydrogen Ion Electrodes							183
	Calomel Reference Electrodes						•	184
	Silver-Silver Chloride Electrodes	•	•	•	•		•	202
	Temperature Coefficients of Cells and	EE	etro	des	• •			202
				uco .	• •	• •	•	200
8.	PROPERTIES OF GLASS ELECTRODES .	•	•	•	• •	•	•	212
	The pH Response	•	•	••	•			212
	Structure of Electrode Glasses		•		• •			214
	Hygroscopicity and pH Response			•				217
	Chemical Durability and Voltage Dep	parti	ıres					220
	Electrical Resistance							223
	The Asymmetry Potential						•	230
	Composition of Electrode Glasses							232
	Development of the Surface Potential	۳.					•	025

- --

-

IAI CHASS ELECTIOUES	• •	•	•	•	•	• •	•
Care of Glass Electrodes .	• •	•	•	•	•		•
9. MEASUREMENT OF ELECTROMOTIVE	E FORCE.	Тне	pH	Мети	ER		
Potentiometers	• •		-				
Galvanometers		•			•		
Standard Cells	• •			•			
Types of pH Meter	• •			· · ·		• •	
Potentiometric or Slide-Wire C	lircuits				•	• •	
Direct-Reading Meters .	• •						
The Vibrating Reed Electrome	ter				•	· · .	
European pH Meters	• • •	· •					
Grid Current	• • •					• •	
Electrometer Tubes							
Effect of Humidity .							
Temperature Effects	^т						
Standard Cell of the pH Mete	r						
Performance Tests							
Adjustments and Repairs							
Determination of pH Values			•	•		• •	
Automatic Titrators	••••	•	•	•		• •	
	•••	•	•	•		• •	
10. AUTOMATIC PH CONTROL	• •	•	·	•	~	• •	
Cell Assemblies	•	·	·	•		• •	
Electrodes		•	·	•		• •	
Amplifiers, Recorders, and Rec	order-Coi	ntrolle	rs	• •			
Principles of Automatic Contro	d	•	•	• •		· ·	
Buffer Action in pH Control	• •	•	•				
Final Control Elements .			•	• •			
Industrial Installations	• •	•		• •			
Appendix		•					
Table 1. Values of $2.30259RT_{i}$	F from	to 1	00°				
Table 2. Ion Product, K_w , of	Water fre	om 0 ·	to 60	0°.			į
Table 3. Vapor Pressure of W	ater fron	a O to	100)° .			
Table 4. Constants of the Deb	ye-Hücke	el The	ory	from	0 to	100°	
Table 5. Dielectric Constants	(D) of I	Pure 1	Liqu	ids .			i
Table 6. Approximate pH ofnear Room Temper	Some Con erature	mmon	Rea	agent	Solu	itions	•
Author Index							5
SUBJECT INDEX							2
JUBGEOI INDEA							