Foreword, by M. KOLTHOFF

Preface

PART ONE. VOLTAMMETRIC AND RELATED METHODS

Chapter 1. Review of Electrochemical Methods	3
I. Historical Development	3
1. Electroanalysis and Coulometry	3
2. Conductometry and Transference Methods	5
3. Potentiometry	5
4. Voltammetry and Polarography	6
II. Potentiometry.	9
1. Direct Potentiometry	9
2. Potentiometric Titrations.	10
III. Voltammetry and Polarography at Controlled Voltage	11
1. Mass Transfer Processes	11
2. Voltammetry at Constant Voltage	12
3. Polarography at Constant Voltage	15
4. Voltammetry with Continuously Changing Potential	17
5. Amperometric Titrations	18
IV. Voltammetry at Constant Current	19
/ V. Electroanalysis and Coulometry	20
1. Electrogravimetry and Electrolytic Separations	20
2. Principle of Coulometry	22
3. Coulometry at Controlled Potential	23
4. Coulometric Titrations at Constant Current.	23
VI. Conductometry and High-Frequency Methods.	25
1. Conductometry	25
2. Conductometric Titrations.	25
3. High-Frequency Methods	26
Chapter 2. Electrode Potentials and Kinetics of Electrochemical	~~
Reactions	28
I. Electrode Potentials	28
II. Equilibrium Electrode Potentials	30
III. Kinetics of Electrochemical Reactions: Case of a Single Process	32
1. General Current-Potential Relationship	32
2. Electrode Processes Involving One or Two Solids	36
3. Current-Potential Curves	36
4. Overvoltage	38
5. Log <i>i</i> versus <i>E</i> Diagrams	40
6. Heats, Entropies, and Free Energies of Activation	41
IV. Case of Consecutive Electrochemical Reactions	43
V. Case of Two Simultaneous Electrochemical Reactions. Mixed	
Potentials	

Chapter 3. Voltammetry and Polarography at Constant Voltage. Reversible Processes
I. Introduction
II. Currents Controlled by the Rate of Semi-infinite Linear Diffusion
1. Partial Differential Equation for Linear Diffusion
2. Variations of Concentration and Current.
3. Current-Potential Characteristic for Reversible Processes
Involving Two Soluble Species
of an Insoluble Substance
III. Currents Controlled by the Rate of Semi-infinite Spherical
Diffusion.
1. Partial Differential Equation for Symmetrical Spherical
Diffusion
2. Variations of Concentration and Current.
3. Current-Potential Characteristics
IV. Currents Controlled by the Rate of Diffusion Toward on Expand-
ing Sphere: Case of the Dropping Mercury Electrode
1. The Ilkovic Equation.
2. Limitations of the Ilkovic Equation
3. Current-Potential Characteristic.
4. Bibliography on the Polarographic Method.
V. Case of Semi-infinite Cylindric Diffusion
1. Partial Differential Equation for Symmetrical Cylindric
Diffusion
2. Variations of Concentration and Current.
VI. Conclusion.
Chapter 4. Voltammetry and Polarography at Constant Voltage
Irreversible Processes.
I. Introduction
II. Derivation of Current for Linear Diffusion
1. Boundary and Initial Conditions.
2. Variations of Current.
III. Totally Irreversible Polarographic Waves.
1. Treatment of Totally Irreversible Waves
2. Properties of Totally Irreversible Waves
3. Determination of the Rate Constant $k_{f,h}$
4 Half-Wave Potential
5. Electrode Process Involving Consecutive Electrochemics
Reactions
IV. Criterion of Polarographic Reversibility
······································

Chapter 5. Voltammetry and Polarography at Constant Potential.	
Kinetic and Catalytic Processes	87
I. Introduction	87
II. Kinetic Currents	87
1. Nature of Kinetic Currents	87
2. Differential Equations in the Case of Linear Diffusion	88
3. Variations of the Current in the Case of Linear Diffusion	89
4. Case of the Dropping Mercury Electrode	90
5. Electrochemical Process Preceded by a Second Order Chemical	
Reaction	91
6. Treatments Based on the Concept of Reaction Layer	92
7. The Reaction Layer Thickness	94
III. Catalytic Currents.	95
1. Nature of Catalytic Currents.	100
2. Differential Equations in the Case of Linear Diffusion	
3. Variations of Current in the Case of Linear Diffusion	
4. Case of the Dropping Mercury Electrode.	
5. Case in Which Substance Z is Reducible	104
6. Treatment Based on the Concept of Reaction Layer	
7. Second Order Catalytic Processes	107
8. Examples and Applications of Catalytic Currents	
IV. Applications in Kinetic Studies	
	110
Chapter 6. Voltammetry and Polarography with Continuously	
Changing Potential	115
I. Introduction	115
II. Current-Potential Curves for Reversible Processes Involving	
Soluble Substances	116
1. Boundary and Initial Conditions.	
2. Current-Potential Curves in the Case of Linear Diffusion	
3. Current-Potential Curves for Cylindric Diffusion	120
III. Current-Potential Curves for the Reversible Deposition of an	
Insoluble Substance	
-1. Boundary and Initial Conditions.	122
2. Current-Potential Curves.	123
IV. Current-Potential Curves for Totally Irreversible Electrode	
Processes	
1. Initial and Boundary Conditions.	
2. Current-Potential Curves	126
V. Consecutive Peak Currents	129
V1. Capacity Current	130
VII. Influence of the Obmic Drop	132

xi

Chapter 6 (continued)
VIII. Multi-Sweep Methods
1. Electrochemical Processes
2. Variations of the Concentration of Reducible Substance
3. Fluctuations in Drop Time in the Case of the Dropping Mer
cury Electrode
IX. Applications and Potentialities.
1. Applications to Analytical Chemistry
2. Applications to the Study of Electrode Processes
3. Applications to the Study of Double Layer Phenomena
Chapter 7. Voltammetry and Polarography with Periodically
Changing Potential
I. Introduction
II. Pseudo-capacity and Polarization Resistance in the Absence of An
Coupled Chemical Reaction.
1. General Relationships for R_{\bullet} and C_{\bullet}
2. Derivation of $dC_0(0, t)/dt$ and $dC_R(0, t)/dt$
3. Evaluation of θ .
4. Evaluation of R_s and C_s : Case in Which the Constant Component of the Electrode Potential Is the Standard Potential
the Bulk Concentrations of Substances O and R Being Equal.
5. Evaluation of R_s and C_s : General Case.
6. Properties of the Faradaic Impedance: θ is Equal to Zero
7. Properties of the Faradaic Impedance: θ is Different from
Zero
III. Faradaic Impedance in the Case in which the Electrochemica
Process is Preceded by a Chemical Reaction
1. The Boundary Value Problem
2. Polarization Resistance and Pseudo-capacity.
3. Influence of Frequency
4. Other Cases of Kinetic Processes
IV. Influence of the Double Layer Capacity and the Resistance of the
Cell
V. Application to Polarography with Superimposed Alternating
Voltage.
1. Reversible Processes
2. Irreversible Processes.
3. Formation of Lissajous Patterns.
4. Electrolysis with Superimposed Square-Wave Voltage
VI. Applications and Potentialities
2. Kinetics of Electrode Processes
Chapter 8. Voltammetry at Controlled Current
I. Introduction. 17 II. Single Electrochemical Reaction in the Absence of any Kinetic of
Catalytic Effect.
1. Initial and Boundary Conditions
2. Variations of the Concentrations $C_0(x, t)$ and $C_R(x, t)$ 18
\sim =. \cdot and \cdot

Chapter 8 (continued)

3. Potential-Time Curves for a Reversible Process Involving Two	
Soluble Species	181
4. Potential-Time Curves for the Reversible Deposition of an	
Insoluble Substance	186
5. Potential-Time Curves for Totally Irreversible Processes	186
III. Two Consecutive Electrochemical Reactions Involving Different	
Substances.	189
1. The Boundary Value Problem	189
2. Transition Time for the Second Step of the Potential-Time	
Curve	191
IV. Stepwise Electrode Processes 1. The Boundary Value Problem	191
2. Transition Time for the Second Step of the Potential-Time	191
Curve	
V. Cathodic Process Followed by Anodic Oxidation and Vice Versa.	194
1. The Boundary Value Problem	100
2. Transition Time for the Re-oxidation Process	199
3. Potential-Time Curves	106
VI. Kinetic Processes.	
1. Differential Equations: Boundary and Initial Conditions	
2. Transition Time	108
3. Variations of the Product $i_0 \tau^{1/2}$ with Current Density	199
4. Treatment Based on the Concept of Reaction Layer	200
VII. Electrochemical Reaction Followed by a Chemical Reaction	202
1. The Boundary Value Problem	202
2. Potential-Time Curves	202
3. Influence of Current Density.	203
VIII. Catalytic Processes	204
IX. Miscellaneous Electrode Processes.	207
X. Influence of the Double Layer.	207
XI. Influence of the Adsorption of Foreign Substances on the Transition	
Time	209
XII. Electrolysis with Periodically Changing Current	209
XIII. Applications and Potentialities	211
1. Application as an Analytical Tool	211
2. Application to the Determination of Diffusion Coefficients	214
3. Applications in Kinetic Studies	214
Chapter 9. Current-Potential Curves Obtained in Stirred Solutions	
or with Moving Electrodes.	017
I. Treatment Based on the Concept of Diffusion Layer.	
1. Introduction	217
2. The Concept of Diffusion Layer.	217
3. Current-Potential Curves for Reversible Processes	217
4. Current-Potential Curves for Irreversible Processes	418
5. Factors Affecting the Limiting Current. Evaluation of the	444
Concept of Diffusion Layer.	226

Chapter 9 (continued)

II. Application of Hydrodynamics to Mass Transfer in Electrode Processes.
1. General Equations for Mass Transfer.
2. Limiting Current for the Rotating Disk in the Case of Laminar
Flow.
3. Limiting Current for the Plane Electrode in the Case of Lam-
inar Flow.
4. Limiting Currents in the Case of Turbulent Flow
5. Current-Potential Curves for Irreversible Processes.
6. Application of Dimensional Analysis
III. The Streaming Mercury Electrode.
1. Principle and Hydrodynamic Problem
2. Derivation of the Limiting Current.
3. Potentialities and Applications.
IV. The Rotating Solid Electrode
V. The Rotating Mercury Electrode.
1. Description of the Electrode.
2. Current-Potential Curves for the Reversible Deposition of an
Amalgam Forming Metal
3. Variations of Current at Constant Potential
4. Current-Potential Curves Determined by an Automatic Re-
cording Instrument.
5. Applications and Potentialities
VI. Vibrating Electrodes
VII. Conclusion.
Chapter 10. Voltammetric Titrations
I. Introduction.
11. Potentiometric Titrations at Constant Current with One Polorized
Electrode
III. Potentiometric Titrations at Constant Current with Two Polerized
Electrodes
IV. Amperometric Titrations at Constant Voltage with Two Polarized
Electrodes. "Dead-Stop End Point"

PART TWO. COULOMETRY, ELECTROLYTIC SEPARATIONS, AND RELATED METHODS

Chapter 11. Current Efficiency and Degree of Completion of Elec-	
trode Processes	267
I. Introduction.	267
11. Current Efficiency of Electrode Processes	967
1. Conditions Controlling the Efficiency of Electrode Processes	401 067
2. Side Reactions Involving the Solvent.	207
3. Side Reactions Involving the Electrode	268

xiv

Chapter 11 (continued)	
4. Side Reactions Involving Substances not Consumed or Liber ated in the Electrode Process	- . 271
5. Side Reactions Involving a Product of Electrolysis.	272
III. Control of the Degree of Completion of Electrode Processes	273
. 1. Importance of Electrode Potential	273
2. Reversible Electrode Processes.	273
3. Irreversible Electrode Processes and Experimental Determina tion of Conditions of Electrolysis	- 277
4. Selection of Potential in the Reversible Deposition of Less Than a Monolayer of Substance	3
Chapter 12. Electrolysis at Controlled Potential and Related	l
Methods.	. 282
I. Introduction	282
II. Variations of Current in Electrolysis at Constant Potential	283
1. Electrolysis of a Soluble Substance.	283
2. Electrolysis of an Insoluble Substance.	284
III. Coulometric Analysis at Constant Potential	287
1. Direct Coulometry.	287
2. Coulogravimetry.	289
IV. Coulometric Analysis at Variable Potential.	290
V. Application of Coulometry to Determination of the Number of	
Electrons Involved in an Electrode Reaction	291
1. Coulometric Method	291
2. Microcoulometric Methods VI. Applications of Electrolysis at Constant Potential in Electrochem-	292
ical Kinetics.	
1. Determination of the Current-Potential Curve for a Single	295
Process in the Case of Simultaneous Electrochemical Reac-	
tions	905
2. Kinetics of the Anodic Oxidation of Metals.	207
VII. Applications in Preparative Chemistry	207
Chapter 13. Electrolytic Separations and Related Methods	
Chapter 14. Coulometry at Controlled Current.	301
I. Introduction	301
II. Variations of the Potential of the Generating Electrode.	302
III. Determination of End Point	304
IV. Titration Error.	307
V. Coulometric Titrations with External Generation.	307
VI. Miscellaneous Forms of Coulometric Titrations.	308
VII. Applications and Potentialities of Coulometric Titrations.	309
VIII. Application to the Determination of the Thickness of Metallic	
Coatings and Corrosion Films	312
rent	014
	314

PART THREE. HIGH-FREQUENCY METHODS

Chapter 15. High-Frequency Methods, by Charles N. Reilley
I. Introduction.
II. High-Frequency Current-Voltage Relationship
III. High-Frequency Methods.
1. Equivalent Circuit Analysis—"Condenser" Type
2. Equivalent Circuit Analysis—"Coil" Type Method
IV. Applications
1. Titrations
2. Single Measurement Methods.
3. High-Frequency Methods as Adjuncts for Other Purposes
V. Instrumentation
1. Cell Construction
2. Instruments

PART FOUR. INSTRUMENTATION

Chapter 16. Instrumentation in Voltammetry and Relate	bed
Methods	
I. Introduction	
II. Electrodes and Electrolytic Cells.	
1. Classification of Electrodes and Electrolytic Cells	
2. Electrodes for Electrolysis in Unstirred Solution	
3. Electrodes for Electrolysis in Stirred Solution	
4. Electrolytic Cells and Reference Electrodes.	
III. Voltage Measurement and Recording	
1. Voltage Measurements	
2. Recording of a Voltage-"Continuous Balance" Recording	ng
Potentiometers.	0
IV. Differentiation and Integration of Voltage-Time Functions	
1. Differentiation of Voltage-Time Functions	
2. Integration of Voltage-Time Functions.	
V. Determination of Current-Potential Curves.	
1. Mechanical Polarization Units.	
2. Electronic Polarization Units.	
3. Recording of the Derivative di/dE versus Potential	
VI. Electrolysis with Superposed Alternating Voltage	
1. Direct Measurement of Alternating Current	375
2. A. C. Bridges	376
VII. Instrumentation in Voltammetry at Constant Current	377
1. Measurements with Mercury Pool or Solid Electrodes	377
2. Dropping Mercury Electrode	381
Chapter 17. Instrumentation in Voltammetric Titrations	382
I. Introduction.	382
II. Automatic Recording of Titration Curves	382

Chapter 17 (continued)	
III. Automatic Determination of End Point IV. Derivative of Titration Curve	386 389
Chapter 18. Instrumentation in Electrolysis at Controlled Poten-	001
tial	391 396 398
Chapter 19. Instrumentation in Coulometry at Controlled	
 Current. I. Electrolytic Cells. II. Power Supplies and Titration Apparatus. III. Automatic Titrations. IV. Continuous Coulometric Titrations with Controlled Current. V. Determination of Film Thicknesses. VI. Apparatus for the Study of Electrode Processes at Controlled Current. Appendix 1. Special Forms of the Nernst Equation. 	402 402 404 405 407 407
Appendix 2. Solution of Some of the Boundary Value Problems of Chapter 3.	115
 The Laplace Transformation. Derivation of Equation (3-4). Derivation of Equations (3-14) and (3-15). Derivation of Equation (3-32). 	415 417 418
Author Index	421
Subject Index	429

J,

xvii