CONTENTS

Studies in <i>I</i> rface Science and	(other volumes in the series) X	XVI I
Preface	· · · · · · · · · · · · · · · · · ·	XIX
List of Cor ibutors	· · · · · · · · · · · · · · · · · · ·	, T T T

PART I: KINETICS AND MECHANISM OF HYDROGENATION AND HYDROGENOLYTIC REACTIONS

Chapter 1: Some problems of chemical kinetics in heterogeneous hydrogenatio	ń
catalysis (S.L. Kiperman)	8
1.1 Introduction	
1.2 Specific kinetic aspects of catalyzed hydrogenation reactions	
1.3 Mechanism and kinetics of hydrogenation. General concepts	
1.4 Kinetic models of hydrogenation in the gas phase	10
1.4.1 Hydrogenation of olefins	10
1.4.2 Hydrogenation of diene hydrocarbons	14
1.4.3 Hydrogenation of acetylene compounds	15
1.4.4 Hydrogenolysis of aliphatic and alicyclic hydrocarbons	16
V 1.4.5 Hydrogenation of aromatic compounds	18
1.4.6 Hydrogenation of oxygen- and nitrogen-containing compounds .	23
1.4.7 Interaction of heterocyclic compounds with hydrogen	28
1.5 Kinetic behaviour of liquid-phase hydrogenation	31
arsigma1.6 Hydrogenation in systems containing several unsaturated compounds .	35
1.7 Selectivity of hydrogenation	38
1.8 Conclusion	43
References	45
Chapter 2: Synergy in catalytic reactions involving hydrogen: possible role	e -
of surface-mobile species (B.K. Hodnett and B. Delmon)	
2.1 Introduction	53
2.2 Literature survey of synergistic effects in catalytic reactions	
involving hydrogen	
2.2.1 Hydrogenation on catalysts composed of noble metals (Pt and	
Pd) and inorganic oxides (SiO ₂ and Al ₂ O ₃)	56
2.2.2 Hydrogenation and hydrodesulphuration over sulphide catalysts	5 8
2.2.3 Coke formation on reforming catalysts	59
2.3 Possible origins of synergy in reactions involving hydrogen	59
2.3.1 Classical bifunctional catalysis	59
2.3.2 Formation of compounds between two phases	60

2.3.3 Contamination of the surface of one phase by elements from the	
other phase	61
2.3.4 Reaction of spill-over hydrogen produced on one phase with a	
reactant adsorbed on another phase	62
2.3.5 Creation or regeneration of catalytic centres on one phase by	
spill-over hydrogen emitted by the other phase: the "remote	
control" concept	65
2.4 Special discussion of mechanisms involving surface-mobile species:	
possible outlook; control of selectivity	67
2.4.1 Extent of formation of spill-over hydrogen on SiO ₂ and AI_2O_3	68
2.4.2 Factors influencing spill-over: possible mechanisms	69
2.4.3 Creation and regeneration of surface sites by spill-over	
hydrogen	70
2.4.4 The role of surface-mobile species in determining selectivity	74
2.5 Conclusions	76
References	76
Chapter 3: Adsorption and hydrogenation of carbonyl and related compounds	
on transition metal catalysts (K. Tanaka)	79
3.1 Introduction	79
3.2 Comparison with olefin hydrogenation	80
3.2.1 Complexity in carbonyl compound hydrogenation	80
3.2.2 Equilibrium positions	80
3.2.3 Reaction pathways	81
3.3 Deuterium tracer studies	83
3.3.1 Aliphatic ketones and aldehydes	83
3.3.2 Alicyclic ketones	85
3.3.3 Aromatic ketones	89
3.4 Stereochemistry of alicyclic ketone hydrogenation	90
3.5 Kinetics, substituent effects and related subjects	91
3.5.1 Kinetic studies	91
3.5.2 Substituent effects, competitive reactions	92
3.6 Characterization of adsorbed species	94
3.6.1 IR spectroscopy	94
3.6.2 Thermal desorption	98
3.6.3 Ultraviolet photoelectron spectroscopy	99
3.6.4 Extrapolation from UHV-low temperature.conditions	99
	100
	101

Chapter	4: Hydrogenation of nitriles (J. Volf and J. Pašek)	105
4.1	Introduction	105
	Reaction scheme in the formation of primary, secondary and tertiary	
	amines	106
4.3	Catalysts for hydrogenation of nitriles	111
4.4	Properties of the main types of catalysts for hydrogenation of	
	nitriles	114
a.	4.4.1 Nickel and cobalt catalysts	114
	4.4.2 Copper catalysts	119
	4.4.3 Catalysts from the platinum group metals	121
4.5	Effect of nitrile structure on hydrogenation	125
4.6	Effect of reaction conditions on hydrogenation of nitriles	128
7	4.6.1 Temperature	128
	4.6.2 Hydrogen pressure	130
	4.6.3 Ammonia	132
	4.6.4 Water	135
4.7	Conclusion	140
Refe	erences *	141
Chapton	5. Hydrogonolycic of C.C. bonds on platinum based bimetallis	
	5: Hydrogenolysis of C-C bonds on platinum-based bimetallic	445
	lysts (F. Garin, L. Hilaire and G. Maire)	145
	Introduction	145
	General properties of bimetallic catalysts	146
	5.2.1 Geometric and electronic factors	146
	5.2.2 The rigid band model	146
	5.2.3 The geometric effect	147
	5.2.4 The electronic factor (ligand effect)	148
	5.2.5 Synergistic effects	148
	5.2.6 Surface segregation	149
	5.2.7 Small particles	149
	Hydrogenolysis reactions	150
•		150
		154
	•	157
	luding remarks	194
Refe	rences	105

Chapter 6: Hydrogenative denitrogenation of model compounds as related to	
the refining of liquid fuels (H. Schulz, M. Schon and N.M. Rahman) .	201
6.1 Organic nitrogen compounds in tars, oils from coal, shale and	
petroleum	201
6.2 Evaluation of catalyst selectivity for HDS, HDO and HDN reactions	
and hydrogenation of multiple bonds	204
6.2.1 Conversion of a four compound model mixture	205
6.2.2 Evaluation of specific HDS activity	207
6.2.3 Evaluation of specific HDO activity	209
6.2.4 Evaluation of specific HDN activity	210
6.2.5 Concluding evaluation of specific catalyst activity	212
6.2.6 Variation of the compounds of the mixture	213
6.2.7 Variation of the partial pressure of one of the compounds	
of the model mixture	213
6.3 Simultaneously proceeding hydrogenation reactions during refining	
of oils from "Sumpfphase" coal hydrogenation	216
6.4 Reaction steps in denitrogenation	218
6.4.1 Nitrogen in aliphatic amines	210
6.4.2 Nitrogen in amino groups attached to aromatic rings: anilin	9
and homologues	222
6.4.3 Nitrogen in aromatic six-membered heterocycles: pyridine,	
quinoline, isoquinoline, acridine	225
6.4.4 Nitrogen in aromatic five-membered heterocycles: pyrrole,	
indole, carbazole \ldots \ldots \ldots \ldots \ldots	239
6.4.5 Nitrogen in saturated monocyclic five- and six-membered	
rings: pyrrolidine and piperidine	244
6.5 Generalization for fast and slow steps in HDN reaction networks .	246
Appendix	252
References	
Chapter 7: Effect of catalyst composition on reaction networks in	257
hydrodesulphurization (M. Zdražil and M. Kraus)	
7.1 Introduction \ldots \ldots \ldots	257 257
7.2 The chemistry of hydrodesulphurization	
7.3 Kinetic consequences	259
7.4 Effects of structure, temperature and hydrogen pressure	262
7.5 Synergic effects on the distribution of intermediates	262
7.5.1 Non-aromatic cyclic sulphur compounds	262
7.5.2 Unsaturated hydrocarbons	. 269
7.6 Synergic effects on individual reactions	. 272
7.7 Conclusions	273
	275

VIII

PART II: HETEROGÈNEOUS HYDROGENATION CATALYSTS. NEW ASPECTS

Chapter 8: Carrier effect on hydrogenation properties of metals (G.M.	
Pajonk and S.J. Teichner)	277
8.1 Introduction	277
8.2 Some previous data	278
8.3 Recent views on the metal-support effects	283
8.4 Hydrogenation of carbon oxides	284
8.4.1 Nickel-based catalysts	284
8.4.2 Platinum-based catalysts	289
8.4.3 Palladium-based catalysts	290
8.4.4 Ruthenium-based catalysts	291
8.4.5 Rhodium-based catalysts	292
8.4.6 Cobalt-based catalysts	293
8.4.7 Iron-based catalysts	293
8.4.8 Molybdenum-based catalysts	295
$\sqrt{8.5}$ Hydrogenation of benzene and other aromatics \ldots \ldots \ldots	295
8.5.1 Metals supported on TiO ₂ catalysts	296
8.5.2 Metals supported on other inorganic supports	297
8.5.3 Metals supported on organic carriers	299
8.6 Hydrogenation of mono- and diolefins	299
8.7 Miscellaneous hydrogenations	301
8.7.1 Organic reactants	301
8.7.2 Inorganic reactants	304
8.8 Influence of the metal-support interaction on the deactivation	of
supported catalysts	305
8.9 Conclusions	307
References	307
Charter O. Dele of kinetallie estaluate in satelutic hydrogenation and	ł
Chapter 9: Role of bimetallic catalysts in catalytic hydrogenation and hydrogenolysis (L. Guczi and Z. Schay)	313
9.1 Introduction	313
9.2 Ensemble size effect and surface segregation	315
9.2.1 Ni-Cu alloys	315
9.2.2 Pt-Au alloys	318
9.2.3 Ru-Cu alloys	319
9.2.4 Pt-Pd alloys	320
9.3 Ensemble size effect accompanied by secondary effects	320
9.3.1 Matrix effect	322
9.3.2 Hydrogen effect	325
	325
9.3.3 Metal-support interaction and segregation	330

х

9.4 Conclusions 3	33
References 3	33
Chapter 10: Supported mono- and bimetallic catalysts in hydrocarbon	
conversions (J. Völter)	37
10.1 Introduction	
10.2 Preparation and structure	38
10.2.1 Monometallic systems (Pt/Al_2O_3)	38
10.2.2 Bimetallic systems	
10.2.3 Further bimetallic systems of Pt, Pd, Rh and Ni 34	181
10.3 Catalysis with bimetallic systems	10
10.3.1 Hydrogenation	
10.3.2 Dehydrogenation	
10.3.3 Dehydrocyclization (reforming)	
10.3.4 Dehydroisomerization	
10.3.5 Hydrogenolysis	53
10.4 Coking	53
10.4.1 Initial coking	1
10.4.2 Long-term coking	
10.5 General discussion	
10.5.1 Preparation and structure	57
10.5.2 Classification of reactions	58
10.5.3 Bimetal effect in selective conversions 36	50
10.5.4 Bimetal effect in non-selective conversions 36	52
10.6 Conclusions	57
10.6.1 Preparation and structure	57
10.6.2 Coking	57
10.6.3 Catalysis	
References	
Chapter 11: Supported bimetallic catalysts prepared by controlled surface	
	73
11.1 Introduction	
11.2 The mode of control of surface reactions involved in the prepara-	
	74
11.2.1 General aspects	
	 75
	76
	7.6

11.3.1 Electrochemical approach . . .

11.3.2 Organometallic approach

376

379

. .

.

. .

. . . .

. . .

.

11.4 Preparation of supported bimetallic catalysts via metal adsorp-	
tion	380
11.4.1 Technical aspects of the preparation	380
411.4.2 Preparation of bimetallic Pd-Pt/Al ₂ 0 ₃ catalysts	381
[11.4.3 Preparation of Pt/Al ₂ 0 ₃ catalysts modified by adsorbed Re	
U and Sn	381
11.5 Preparation of supported bimetallic catalysts by using organo-	
metallic compounds	
11.5.1 The experimental technique and procedures used	385
11.5.2 Preparation of supported Sn-Pt catalysts	286
11.5.3 Preparation of lead-modified alumina-supported nickel	
catalysts	390
11.6 Catalytic properties of supported bimetallic catalysts prepared	
via controlled surface reactions	
11.6.1 General aspects	201
11.6.2 Benzene hydrogenation	391
11.6.3 n-Hexane conversion	392
11.6.4 Hydrogenation of acrylonitrile	393
11.7 Conclusions	405
	407
References	407
Chapter 12: New supported metallic nickel systems (J.M. Marinas, J.M	
Campelo and D. Luna)	411 -
12.1 Introduction	411
12.2 Preparation and characterization of nickel catalysts	412
12.2.1 Introduction	412
12.2.2 New preparation methods	
12.2.3 New materials	412
12.3 Metal-support interaction	414
	434 🗸
12.4 Catalyzed reactions	440
12.5 Poisoning and deactivation	442
12.6 Promoting effects	447
12.7 Conclusions	450
References	450

XI

PART ADVANCES IN HOMOGENEOUS HYDROGENATION

Chapter 13: Supported metal complexes as hydrogenation catalysts (Yu.I.	
Yermakov and L.N. Arzamaskova)	459
13.1 Introduction	459
13.1.1 General information on catalysts prepared by anchoring of	
metal complexes	459
13.1.2 The stability of anchored metal complexes	465
13.2 Hydrogenation of unsaturated hydrocarbons in the presence of	
anchored metal complexes	466
13.2.1 The problem \ldots	466
13.2.2 Parameters influencing the accessibility of active centers	467
13.2.3 Substrate activation in the coordination sphere of anchored	
palladium complexes	472
13.2.4 Some conclusions	478
13.3 Hydrogenation of unsaturated hydrocarbons in the presence of	
	479
transition metal ions on non-functionalized oxides	512
13.3.1 Catalysts prepared from anchored π -allyl complexes of	479
Group 6 metals	4/3
13.3.2 Catalysts prepared from anchored complexes of Group 4	400
metals	480
13.3.3 Catalysts prepared from anchored organometallic complexes	404
of actinides	481
13.4 Anchored organometallic complexes as precursors for the prepara-	404
tion of highly dispersed metallic particles	481
13.4.1 Preparation of metallic catalysts by decomposition of	
surface organometallic complexes	482
13.4.2 Low-valent surface ions as anchoring sites for stabiliza-	
tion of dispersed metals and the problem of the strong	
metal-support interaction	483
13.4.3 The preparation of metallic catalysts by decomposition	
of anchored metal carbonyls	484
13.4.4 Some conclusions	486
13.5 Conclusion	487
References	487
Chapter 14: Supported asymmetric hydrogenation catalysts (J. Hetflejš) .	497
14.1 Introduction	497
14.2 Polymer-supported asymmetric hydrogenation catalysts	498
14.3 Asymmetric hydrogenation catalysts anchored to inorganic supports	509
14.4 Concluding remarks	512
Deferences	512

PART IV: CATALYTIC HYDROGENATION REACTORS AND TECHNOLOGIES

Chapter 15: Liquid-phase hydrogenation: the role of mass and heat transfer	
in slurry reactors (G. Gut, O.M. Kut, F. Yuecelen and D. Wagner)	517
15.1 Introduction	517
15.2 Overall model	
	517
15.2.1 Surface reaction	518
15.2.2 Poisoning and inhibition	521
15.3 Mass transfer and kinetics	523
15.3.1 Transport of hydrogen	523
15.3.2 Transport of substrate	524
15.3.3 Estimation of the absorption coefficient of hydrogen	525
15.3.4 Estimation of the transfer coefficient to the catalyst	527
15.3.5 Checking for effects of mass transfer on the kinetics	530
15.3.6 Pore diffusion	530
15.4 Examples of application and simulation	531
15.4.1 Batch reactor: effects of hydrogen and substrate transfer	531
15.4.2 Continuous stirred tank slurry reactor: basic concept	533
15.4.3 CSTR: combination of mass transfer with chemical reaction	534
15.4.4 CSTR: simulation of conversion profiles	535
15.4.5 Batch reactor: effects of the rates of heat production and	
heat transfer	537
15.4.6 Batch reactor: effects of film and pore diffusion	538
15.5 Notation	542
References	544
Chapter 16: Application of fixed-bed reactors to liquid-phase hydrogenation	
(J. Hanika and V. Staněk)	547
16.1 Introduction	547
16.2 Literature survey	548
16.3 Parameters affecting the productivity of multi-phase fixed-bed	540
reactors	548
16.4 Mass and heat transfer in three-phase fixed-bed reactors	549
16.5 Structural properties of fixed catalytic beds	1.1
	550
16.6 Mathematical modelling in the design and operation of trickle-bed	
reactors	<u>5</u> 52
16.7 Hydrogenation of cyclohexene in a trickle-bed reactor	557
16.7.1 Experimental set-ups and reaction conditions \ldots	558
16.7.2 Steady-state operation of the trickle-bed reactor	559
16.7.3 Dynamic behaviour of the trickle-bed reactor	566
16.7.4 Hysteresis properties of trickle-bed reactors	569

18.4 C_4 cut hydrorefining	235
18.4.1 Hydrorefining of the C_4 butadiene-rich cut (selective	
hydrogenation of vinylacetylene)	536
18.4.2 Hydrorefining of 1-butene-rich cuts (selective hydrogenatic	
of ⁱ butadiene)	643
18.4.3 Hydroisomerization of 1-butene cuts	648
18.5 Gasoline cut hydrorefining	652
18.5.1 Characteristics of steam-cracked gasolines and specifica-	
tions of hydrogenated products	652
18.5.2 Refining by selective hydrogenation	653
18.5.3 Processes	656
18.5.4 Industrial performance	659
18.6 Conclusion	665
Poforoncos	665

Subject Index

667