Contents

	Freiace	V				
L	Electrons in Atoms					
	Introductory Remarks	1				
	Rohr Theory of the Hydrogen Atom (1013)	1				
	The Spectrum of the Hydrogen Atom	5				
	The Need to Modify the Bohr Theory	9				
	Electron Waves	9				
	The Uncertainty Principle	11				
	The Wave Function	12				
	The Schrödinger Wave Equation	13				
	The Normalization Constant	13				
	The Radial Part of the Wave Function	13				
	The Angular Part of the Wave Function	14				
	Orbitale	14				
	Flectron Spin	17				
	The Theory of Many Hilestron Atoms	20				
	hiisseil-Saimaers Larms	22				
	Innization Potentials	27				
	Electron Affinities	33				
Į.	Diameter Molecules					
	Covalent Bonding	36				
	Molecular-Orbital Theory	38				

хi

	2-3	Bonding and Antibonding Molecular Orbitals	39	
	2–4	Molecular-Orbital Energy Levels	42	
	2-5	The Hydrogen Molecule	46	
	2–6	Bond Lengths of H ₂ + and H ₂	47	
	2-7	Bond Energies of H ₂ + and H ₂	47	
	2-8	Properties of H ₂ + and H ₂ in a Magnetic Field	48	
	2–9	Second-Row Homonuclear Diatomic Molecules	49	
	2-10	Other A ₂ Molecules	58	
	2–11	Term Symbols for Linear Molecules	60	
	2–12	Heteronuclear Diatomic Molecules	62	
	2-13	Molecular-Orbital Energy-Level Scheme for LiH	67	
	2-14	Ground State of LiH	68	
	2–15	Dipole Moments	69	
	2-16	Electronegativity	69	
	2–17	Ionic Bonding	73	
		Simple Ionic Model for the Alkali Halides	75	
	2–19	General AB Molecules	78	
ш	Linear Triatomic Molecules			
	3–1	BeH ₂		
	3–2	Energy Levels for BeH ₂	89	
		Valence-Bond Theory for BeH ₂	93	
		Linear Triatomic Molecules with π Bonding	95	
		Bond Properties of CO ₂	100	
	3–6			
		Halides		
IV	Trigonal-Planar Molecules			
	4–1	BF ₃	106	
	4-2	σ Molecular Orbitals	106	
	4–3	π Molecular Orbitals	109	
	4-4	Energy Levels for BF ₃	111	
	4-5	Equivalence of σ_x and σ_y Orbitals	112	
	4-6	Ground State of BF ₃	114	
		Valence Bonds for BF ₃	115	
	4-7 4-8	Valence Bonds for BF ₃ Other Trigonal-Planar Molecules	115 117	

			xiii	
V	Tetrahedral Molecules			
	5–1	CH₄	120	
		Ground State of CH.	122	
	5–3	The Tetrahedral Angle	122	
	5–4	Valence Bonds for CH ₄	125	
	5–5	Other Tetrahedral Molecules	127	
	Trig	onal-Pyramidal Molecules		
	6-1	NH_3	129	
	6-2	Overlap in σ_x , σ_y , and σ_z	130	
	6-3			
	6-4	<u> </u>		
		Molecules	137	
	6–5	Ground State of NH ₃	138	
	Ang	rular Triatomic Molecules	141	
	7-1	H_2O	141	
	7–2	Ground State of H ₂ O	143	
	7–3			
		NO_2	148	
		σ Orbitals	148	
		π Orbitals	148	
	7–6	Ground State of NO ₂	152	
	Bon	nding in Organic Molecules	155	
	8-1	Introduction	155	
	8–2		156	
	8-3		159	
		Ground State of C₂H₄	159	
	8-5		160	
	8-6		162	
	8-7		164	
	8-8	-	164	
	8-9	Ground State of H ₂ CO	165	

	8-10	the $n \to \pi^*$ Transition Exhibited by the	
			167
	8-11	C_2H_2	167
	8-12	Ground State of C ₂ H ₂	168
	8-13	CH ₃ CN	168·
	8-14	C_6H_6	170
	8-15	Molecular-Orbital Energies in C ₆ H ₆	171
	8-16	Ground State of C ₆ H ₆	173
	8-17	Resonance Energy in C ₆ H ₆	173
IX	Bond	ls Involving d Valence Orbitals	176
	9-1	Introduction	176
	9–2	The Octahedral Complex Ti(H ₂ O) ₆ ³⁺	176
	9-3	Energy Levels in Ti(H ₂ O) ₆ ³⁺	179
	9-4	Ground State of Ti(H ₂ O) ₆ ³⁺	181
	9-5	The Electronic Spectrum of Ti(H ₂ O) ₆ ³⁺	183
	9–6	Valence-Bond Theory for Ti(H ₂ O) ₆ ³⁺	184
	9-7	Crystal-Field Theory for Ti(H ₂ O) ₆ ³⁺	186
	9–8	Relationship of the General Molecular-Orbital	
		Treatment to the Valence-Bond and Crystal-	
		Field Theories	187
	9-9	Types of π Bonding in Metal Complexes	188
	9–10	Square-Planar Complexes	189
	9–11	Tetrahedral Complexes	194
	9-12	The Value of Δ	197
	9–13	The Magnetic Properties of Complexes: Weak-	
		and Strong-Field Ligands	200
	9-14	The Electronic Spectra of Octahedral Complexes	201

Suggested Reading

Appendix: Atomic Orbital Ionization Energies

Index